THE UNIVERSAL EQUATIONS AND PARAMETRIC
APPROXIMATIONS IN THE THEORY OF THE
LAMINAR BOUNDARY LAYER

(UNIVERSAL'NYE URAVEENIIA I PARANETY . IRIBLIZMENIIA
V TEORII LANMINARNOGO POGRANIOHNOGO SLOIA)

(R L3

PMM Vol.29, Ne 1, 1965, pp.70-87

L.G. LOITSIANSKII
(Leningrad)

(Received October 3, 1964)

Existing analytic methods of solutlion of the equations of the laminar bound-
ary layer are based on the representation of these solutions in the form of
power serles of certain parameters, either characterizing the external dis-
tribution only (Falkner [1], Gdrtler [2], Shkadov [3 and %] and others), or
else taking account in addltion of the development of the boundary layer
(Loitsianskii [5}). In all these methods the determination of the coeffici-
ents in the power serles reduces to the integration of systems of ordinary
differentlal equations possessing the property of universallity 1in the sense
that neither these equations themselves, nor the corresponding boundary con-
ditions, depend upon the conditions of & given particular problem, and con-
sequently they can be integrated numerically in advance once and for all,

and the results tabulated. The effectiveness of the application of such
methods is limited by the speed of convergence of the serles, which decreases
sharply in the neighborhood of the polnt of sepatation of the boundary layer,
this being a singular point of the equations at which the power series are
inapplicable and must be replaced by serles of another type, contalning
together with power terms, logarithmic terms also.

One of the ways of 1improving the analytical methods can be that recom-
mended in the present paper: the method of reducing the fundamental equa~
tions of the boundary layer to unlversal form, in the sense already speci-
fled. The possibility of such universalization of the boundary layer equa-
tions themselves by transferring the parameters expressing the influence of
the external conditions, characteristic of each particular problem, to the
number of independent variables, is demonstrated in examples of the bhoundary
layer equations in incompressible liquid, and in unliform gases and gases
under dissociative equilibrium, at large velocitiles of motion.

The fundamental significance of the method described consists in the
replacement of the series by the use of tables composed once and for all by
means of direct numerical integration of the universal partial differential
equations.

The difficulties mentioned above, connected with the presence of a singu-
larity at the point of separation, whilst emerging anew as a result of the
increase in the number of independent variables in the differential equations,
are at the same time transferred from the field of analysis to the field of
machine computation techniques, and, because of the need to carry out this
whole calculation only once in the compilation of the tables, thls can scarcely
be counted amongst the essential shortcomings of the method. On the other
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hand, it is necessary to bear in mind the fact that the increase in the num-
ber of arguments carries the ipconvenience assoclated with the use of tables
with a large number of "entries. This forces us to consider the question of
the cholce of such a sequence of parameters that the use of the first two or
three of them should lead right away to acceptable accuracy of the results.
To serve as such a system of parameters for the boundary layer in incompress-
ible fluid, in the present paper we shall take a set of dimensionless quan-
titles, expressing in terms of powers of the external velocity, its succes~
sive derivatives with respect to the longitudinal coordinate, and also by
power series the relationship of the square 6f the momentum thickness in the
given section of boundary layer to the kinematic coefficient of viscosity.
The first term of this set comprises the "shape parameter”, used in the vari-
ous approximate one-parameter methods, based on the application of the inte-
gral momentum condition and discriminating by its choice between this or that
form of velocity profile in the boundary layer cross-sections [6 and 7].
Moreover, even the first approximation, calculated by means of integrating
the universal equation with one parameter, leads to the same result as the
one-parameter method, if in the latter we take for the competing veloclty
profille in the boundary layer sectlons the class of exact solutions of the
boundary layer equatlions corresponding to a linear distribution of velocity
outside the boundary layer {8 and 9]. As 1is well known, this approximation
which will be called the "one-parameter” solution, depicts in a completely
satisfactory manner the actual motion in the boundary layer for the majority
of velocity distributions encountered at the external surface of the bound-
ary"layer. It may therefore be thoughtthat application of the "two-parame-
ter", or in the extreme case, the "three-parameter"” approximation to the
solution ¢¢ the universal equations will prove to be completely satisfactory
for a broad family of problems, and therefore it wlll not be necessary to
make use of the tables with an excesslively large number of entries. This
fact is conflirmed by the comparison with the exact solution, made in this
paper, for the problem concerning the boundary layer in incompressible fluid
with a sinusoidal distribution of velocities on the outer surface [10].

The set of form-parameters here proposed, thanks to their inclusion of the
determination of the momentum thickness enables one to obtaln, although only
approximately, the solution of the well-known boundary layer theory problem
of “"continuatlon", i.,e. calculation of the influence ot the previous history
of the flow in the boundary layer on its development in the portions of the
layer further downstream,

As 1s shown in the final sectlons of thls paper, universalization of the
equations of the laminar boundary layer is accomplished not only in the case
of isothermal flow of an incompressible fluld, but also in the more general
cases of the boundary layer in a stream of homogeneous .gas, and also of gas
in dissociative equilibrium, with high velocities of motlon.

The enumerated cases are not the only cases permitting universalilzation of
the equations and the obtaining of their one and multi-parameter solutions.
In particular, universal equations of this type can be derived from the equa-
tions of nonequilibrium boundary layers, the boundary layers in magnetohydro-
dynamics and other physically more complex problems in the theory of the lami-
nar boundary layer. What is more, the same method of universalization of the
equations and boundary conditions can be useful in the csolution of problems,
relating not only to the theory of the boundary layer, but also to the other
problems where the integration of nonlinear partial differential equations
of parabolic type 1s necessary (for example, to nonlinear problems of heat
conduction).

1. The isothermal boundary layer in inoompressidble fluid; <the differen~
tial equation for the reduced stream funoction., The laminar boundary layer
equaticn in incompressible fluild and the conditions for isothermal flow
reduce to an equation for the stream function w(x,y)

p axpazw_U%QH?__\g
x

Oy Oz dy oz 0y? (1.1

117:2—3):0 for y =0, Z—;E-—u—%U(x) for :y— o0, g—;’/—)zuo(y) for * = o
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Here we adopt the usual boundary layer theory notation : x, y are the
longitudinal and perpendicular coordinates, u 1s the longitudinal velocity,
uo(y) the distribution of velocity at a certain given section of the bound-
ary layer (x = x,); u(x) 1s the longitudinal velocity at its outer face,
and vy 41s the coefficient of kinematic viscosity.

Let us transform from the varlables x, Vs v(x, y) to the new variables
x, 2, #(x, £) , by substituting in (1.1) (1.2)
oo}
5o Us* u
z=z, y=(5)t v=(F )0y (@=\7(1—7)aw)
o
0
Here 8** 1s the momentum thickness; By 1s a normalizing constant which

is determined later.
[

Let us carry out the transformation (1.2) in Equation (1.1), making use
also of the well-known momentum equation, written in the following of its
various forms (primes here and in what follows denote differentiation with
respect to x )

5*» UF - F ’ 2 U ;
gv =y =g, F=gFig/ (1.3)

Here we have introduced the conventional boundary layer theory notation

F=2[0—Q2+H/f, (= [_(_“/_Z)_J Ho &
UO

0 (y/6%%) 5*
¢ u Uore , . O
5*:8 (1———3)(1% / v = U'z**, z**:T (1.4)

0
Let us reduce Equation {1.1) to the form (the dot denotes differentiation
with respect to ¢ ) (1.5)

R o G 1~ (R = s (R~ R

@:(D‘:O fOI' :0, @’—)1 fol‘ E-—)OC, (D':(Do'(g) fol‘ T == Xy

Making use of the "reduced” stream function &(x, £) we shall have, in
accordance with (1.4),

u oD __ (1 6d)>d 1.6
F=%. =B H-BoX = U9
0
For definiteness let us take for the function §,(g) the simplest self-
similar solution of the boundary layer equation, corresponding to conditions

U = const, U =0, f=0 (1.7)
(quantities relating to these conditions will hereafter be denoted by the

index zero) and choose the normalizing constant 5, so that Equation (1.5)
in conditions (1.7) coincides with Blasius' equation (%)

*) For the function §,(Z) we could take any self-similar solution of Equa-

tion (1.5), whilat the normalizing constant B, 1s chosen so that this equa-
tion coincides with the well-known Falkner-Skan equation in Hartree's form;
in this connection see also [5].
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(1.8)
Q"+ OD," =0, Dy=Py =0 for =0, @O >1 forf-soo

For this we must set

Fo = 2L, = 2B,? (1.9)
Hence from the well-known solution of Blasius' problem it follows that
B, = ®," (0) = 0.470 (1.10)

Making use of the definition of the momentum thickness (1.2) and making

the substltution of varlables in 1t, we obtain the general relation
[e+] o]

g O (1 —®)dE = S @, (1 — ®,)dE = B, (1.11)
0 0
which enables us to obtain a closed expression for the quantity # 1in terms
of the limiting value of the difference of the functions &(x,g) and &, (g)
as g - ®

We have
H:%=S(1—(D')dy//<§0®'(1-——(D')dy):%&(ioﬂ——(D')d’gt
0 0

0

By
0

Assuming the separate exlstence of the last two integrals, we obtain the
required expression g

H = Hy,+ (1/B,) (®, — D),

Z—+00’

:B%ioa_q)o')dg —%iio(CDo‘—CD')d&
0

H, = 2.592 (1.12)

2. Universal equation of the boundary layer in an inoompressible fluid,
The solution of Equation (1.5), containing the arbitrary function y(x) and
its first derlvative, is a functlon of the varlables x, € and a functional

v D = (z, & (UY) (2.9)
Let us introduce for consideration the infinite combination of form-
parameters [5]
k- k .
f,=U G U/dxk) z**k, Z*F = §x? (k=1,2,..) (2.2)
the first of which s, coincides with the usual form-parameter f of the

one-parameter methods. By virtue of arbitrariness of the function r(x) the

form-parameters f,(x) form a system of independent furictions satlsfylng the
recurrent ordinary differential equation

WUV R = s — 1) fy+ KFYfy + Fon 2.3)
which is easily derived from (2.2) by means of direct differentiation and
use of (1.3).

We shall show that the equation and the boundary conditions (1.5) can be
satisfled by Expression

Q=0 E{UN=CE /.- (2.4)

which does not contain x explicitly. In other words, we shall show that,
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making use of expressions, in accordance with (2.2), for thé "reduced” stream
function ¢ and the normal coordinate ¢ , the influence of the external flow
on the flow in the given section of the boundary layer can be expressed by
means of the comblnatlion of form-parameters (2.2i only. For we note that,
according to (2.%), Equations (1.6) and (1.12) may be rewritten thus:

E=8C(f, far - - ), H = H{f,, fs ..}, F=F({,/f,...)(2.5)
so that the right-hand side of the recurrence relation (2.3) 1s also a func=-
tion of the pgrameters f,, f,, .... We denote this as follows:

[(l" - 1) fl w }'F] fk- 'l fk+1 = ek (flv f‘.’a . ) (26)

Let us choose the form-parameters .y, as the new independent varlables
and let us ¢arry out in Equation (1.5) the substitution of the differential
operator according to Formula

@ NV gr 8 U 0 2.7
oz kglfk o Ul LT (2.7)

following directly from (2.3). We shall have

30 F 2}, o 3*® f1 oPD\2 1 ~ oD 9D o0 2O
et ame Vo el (5) | = e 20 (T e — o) @8)

O=D =0 for £=0, b -1 for & o0

D =Dy, (8) for h=fa=...=0

This equation in the case of the isothermal boundary layer in incompress-
ible fluid serves in fact for the fundamental universal equation, whieh has
been referred to in this paper.

In fact, in this nonlinear third order partial differential equation, as
also in the boundary conditions, there are no magnitudes characterizing the
actual specified problem. Equations (2.8) are one and the same for all prob-
lems in the theory of the 1sothermal boundary layer in incompressible fluid,
in which the velocity distribution on the outer boundary is continuous and
admits the existence of successive derivatives at all points of its r e,
They all reduce, accordingly, to numerical integration of Equation (2?g§<xme
and for all and the construction of tables for the dependence of the reduced
stream function & and its derivative ¢°'= u/b on ¢ and the form-parame-
ters f,, f2:.... For this purpose, eventually, we have to use an electro-
nic computer. The function # appearing in the equation 1s expressed in
terms of the functions and y , which can be determined only after inte-
gration of Equation (2.8). This circumstance does not pose any fundamental
difficulties in constructing the program for integrating Equation (2.8) on
an electronlc computer.

Since after this the function #(g; g s fas «++) 18 determlned once -and
for all, the solution of any actual pro 1em reduces to investigation of the
dependence of &%* (2) or z** (x), characterizing the particular problem., For
this we need to integrate the ordinary nonlinear first order differential

equation
dz** _ Ffyy far o 2 ) . F (U 2%, UU”"z*%2, ., )
dr U (x) - U (x)
Further 1t will be demonstrated that this is the only step of computation,

requiring to be carried out for each given boundary layer calculation; it
can be reduced to a simple quadrature to a sufficient degree of accuracy.

(2.9)
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3. The one-parameter sclution of the universal equation. In the solution
of the universal equation (2.8) there naturally occur a modest number of
form-parameters to be fitted.

For the "one-parameter" solution we shall, in what follows, have in mind
the solutlon corresponding to zero values of all the form-parameters except
the first. For the "two-parameter" solution, zero values attach to all the
form-parameters except tre first two, and so on. Let us agree to denote
these solutions by the corresponding number, placed superscript in brackets.

Thus, setting fo=fa=...= 0 (3.1)

we obtaln the basic universal equation in the "one-parameter” approximation

@ p) Log gy 9200 f1 oA I
9Es + 3By @ 3e2 +"B‘é 1—'(,3&)}_”

. _LF(I) (3(1)(1) 32@(1)_ a1 g2 (3.2)
" B¢ Y\"6E 9Edh ofy oE?

OV = DD =0 jort=0 DYt for £ oo, DV =Dy (E) for A=0

Condition (3.1) in the exact formulation corresponds to the boundary layer
with a linear distribution of velocity on the outer boundary. The function
qﬁl)(g;fl) and 1ts derivatives, and con-
0 sequently also the auxiliary functlons
==
g (fy, HY a FO d v
& (1), (fy) an (f1) cou e

obtained by making use of the one-parameter

class of exact solutlons due to Howarth for
"one-slope" [8] distributlons of external

J ;7 velocity, if we ellmlinate the parameter
4

appearing in these solutions.

/ 5 A computational experiment of this type
shows that preference must be given to
/’ ] direct numerlcal integration of the univer-

sal equation (3.2). Such an integration in
/// the case of one form-parameter was carried

out at the Leningrad Computation Center of
0 £ the Academy of Sclences, USSR, on the com-~

1 20 a0 ¢y Dbuter BOCM-2 (BESM-2). We shall show some
of the results.

Fig. 1 In Table 1 are placed the values of the
dimensionless velocity u / U = @ (€, 1))

for a series of values of § and 7, . Fig.l shows graphs of this dimension-
less velocity; curves 1,... 6 correspond to values of the form-parameter
f.= 0.0854, ©.04, O, —0.04, -—0.07, —0,0845 . In Table 2 are given
values of ¢ and gl and also F0), as a function of f1. The first two
of these quantities serve for computation of the coefficient of local visco-
sity ¢, and the displacement thickness 8*, and the latter for determina-
tion of the momentum thickness 6%** and of the distribution g, (x) which
plays a subsidiary role. The corresponding curves are shown in Figs., 2 and
3.

Using for the one-parameter method the first of the successive approxi-
mate solutions of the universal equation (2.8) 1s better founded from the
theoretical point of view than the old, purely intultive one-parameter
methods. Asisshown by comparative calculations, in particular, the example
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;;\\\\li“ -o.osqsl —0.0835| —0.08 | —0.07| —0.06 | —0.05 t —0.04 ’ —0.03 | —0.02 | —0.01
0 0 0 0 0 0 0 0 0 0 0
0.1 0.0047| 0.0064| 0.0103 ] 0.0175]0.0230]0.027710.03200.0361 | 0.0399 | 0.0435
0.2 0.0132] 0.0166 | 0.0242 | 0.0381 | 0.0486 | 0.0577 | 0.0659 | 0.0735 | 0.0807 | 0.0875
0.3 0.0255| 0.0305| 0.0416 | 0.0648{0.0769|0.089810.1015{0.112210.1223 ' 0.1319
0.4 0.04151 0.0480 | 0.0626 | 0.0886|0.1078 [ 0.1241 |0.438710.1521 [ 0.1647 | 0.1766
0.5 0.0612] 0.0692| 0.0869 | 0.118210.1411{0.1604 | 0.1775]0.1931 | 0.2077 | 0.2216
0.6 0.0844( 0.0938| 0.4445| 0.1506|0.1767|0.198410.2176 | 0.2351 { 0.2514 | 0.2667
0.7 0.1110] 0.1218] 0.4452 | 0.1856 [ 0.2144}10.2381 {0.25900.277910.2953{ 0.3117
0.8 0.1408 | 0.1528] 0.4787| 0.222810.253910.2793 | 0.30140.321310.3396| 0.3566
0.9 0.1737 0.1868 | 0.2149| 0.2621 [ 0.294910.3215|0.3445[0.3650 [ 0.3838 | 0.4012{
1.0 | 0.2093] 0.2234] 0.2534] 0.30320.3373|0.3646(0.3881 | 0.4088 | 0.4277 | 0,4452
1.2 0.2876 | 0.3033| 0.3362| 0.3892|0.4245 0.452110.4754 | 0.4958 | 0.5141 | 0.5308
1.4 0.3731| 0.3898 | 0.4241| 0.4778 10.5125]0.5390{0.5640(0.5799 [ 0.5966 | 0.6117
1.6 0.4625 ] 0,4794| 0.5237| 0.5658 | 0.5982 | 0.6225 | 0.6422 | 0.6588 ! 0.6733 | 0.6862
1.8 0.5522| 0.5687| 0.6014| 0.6496 | 0.6787|0.6999 | 0.7167[0.7306 | 0.7425 ! 0.7529
2.0 0.6386{ 0.6539 | 0.6838| 0.72650.7513]0.7689{0.7826 | 0.7936 | 0.8029 | 00,8108
2.2 0.7181| 0.7317 1 0.7579] 0.7939]0.8141|0.8281 | 0.8386 | 0.8469 | 0.8537 | 0.8594
2.4 0.7881 1 0.7997| 0.8215| 0.85050.8662 | 0.8767 | 0.8843 {0.8903 | 0.8949 | 0.8988
2.6 0.8469] 0.8562 | 0.8735; 0.8958 [ 0.9073 1:0.9148 {0.9201 | 0.9241 | 0.9271 | 0.9295
2.8 0.89391 0.9011] 0.9141 | 0.9303|0.9384{0.94350.9469 | 0.9494}0.9512 | 0.9525
3.0 0.9296 | 0.9348 | 0.9442 | 0.95540.9608]0.9640(0.9661 {0.9676 | 0.9685 | 0.9692
3.2 0.9553| 0.9590| 0.9653| 0.9727[0.9761 [ 0.97800.9792 | 0.9800 | 0.9804 | 0.9807
3.4 (0.9729) 0.9753 | 0.9794; 0.9840 10,9860 | 0.9871 |0.9878 | 0.9881 | 0.9833 | 0.9883
3.6 0.9843 ] 0.9858 | 0.9883 | 0.9911 [ 0.9922 | 0.9928 | 0.9931 | 0.9933 | 0.9933 | 0.9932
3.8 0.9914] 0.9922 1 0.9937] 0.9952]0.9958]0.9961 | 0.9963 | 0.9963 | 0.9963 | 0.9962
4.0 0.99551 0.9960 | 0.9968 | 0.9976 {0.9979!0.9980 | 0.9981 { 0.9981 [ 0.9981 | 0.9980
4.2 0.9977| 0.9980| 0.9984 | 0.9988 | 0.9990|0.99900.9990{0.9990 | 0.9990 | 0.9989
4.4 0.9989 | 0.9991 | 0.9992 | 0.9995|0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9995|
4.6 0.9995 | 0.9996| 0.9997 | 0.9998 (0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9997
4.8 10.99981 0.9998 | 0.9999| 0.9999 | 0.9999|0.9999 [ 0.9999 | 0.9999 | 0.9999 | 0.9999
5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9999
5.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1-0 1.0 1 1.0
5.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
5.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
5.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

worked out in Section 5, the results obtained on the basis of Table 2 are a

good recommendation for the method described in the present Sectlon.
In the accepted one-parameter approximation Equation (2.9) will have the

form

devs  FWy  FO (U2 3.3)
dx U (x) U (%)
\ - F «/)g l \ LOE ;
i/
4 30 fowi—L PZ1 il
i om— T \ P
[(/I ' /Z \ 20
194 0m \\e \\
| 02}
—t } N
AL 1 L £ - j: AN
008 -00% 0 w0 am 008 286 2 20s§
Fig. 2 Fig. 3
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Table 1
0 l 0.01 ’ 0.02 ‘ 0.03 ‘ 0.04 | 0.05 | 0.06 0.07 0.08 0.0854
0 0 0 0 0 0 0 0 0 0
0.0470 | 0.0504 | 0.0537 | 0.0570 | 0.0602 | 0.0634 | 0.0666 | 0.0698 | 0.0730 | 0.0748
0.0939 | 0.1003 | 0.4066 | 0.1126 | 0.1186 | 0.1246 | 0.1305 | 0.1364 | 0.1424 | 0.1457
0.1408 | 0.1498 | 0.1584 | 0.1669 | 0.1752 | 0.1834 | 0.1916 | 0.1998 | 0.2081 | 0.2128
0.1876 | 0.1987 | 0.2094 | 0.2198 | 0.2300 | 0.2401 | 0.2501 | 0.2601 | 0.2704 | 0.2761
0.2343 | 0.2470 | 0.2593 | 0.2712 | 0.2829 | 0.2944 | 0.3059 | 0.3174 | 0.3291 | 0.3358
0.2806 | 0.2947 | 0.3081 | 0.3211 | 0.3339 | 0.3465 | 0.3591 | 0.3716 | 0.3844 | 0.3917
0.3266 | 0.3416 | 0.3558 | 0.3696 | 0.3831 | 0.3964 | 0.4096 | 0.4228 | 0.4364 | 0.4442
0.3720 | 0.3876 | 0.4022 | 0.4164 | 0.4303 | 0.4440 | 0.4575 | 0.4713 | 0.4851 | 0.4932
0.4168 | 0.4325 | 0.4473 | 0.4617 | 0.4756 | 0.4893 | 0.5029 | 0.5166 | 0.5307 | 0.5388
0.4607 | 0.4764 | 0.4910 | 0.5052 | 0.5189 | 0.5324 | 0.5458 | 0.5593 | 0.5732 | 0.5813
0.5453 | 0.5601 | 0.5738 | 0.5868 | 0.5995 | 0.6119 | 0.6242 | 0.6366 | 0.6495 | 0.6572
0.6245 | 0.6376 | 0.6495 | 0.6609 | 0.6718 | 0.6825 | 0.6931 | 0.7038 | 0.7150 | 0.7218
0.6968 | 0.7078 | 0.7176 | 0.7269 | 0.7357 | 0.7443 | 0.7528 | 0.7614 | 0.7706 | 0.7763
0.7611 | 0.7699 | 0.7774 | 0.7845 | 0.7942 | 0.7976 | 0.8039 | 0.8104 | 0.8174 | 0.8218
0.8168 | 0.8233 | 0.8287 | 0.8337 | 0.8383 | 0.8427 | 0.8470 | 0.8514 | 0.8562 | 0.8595
0.8634 | 0.8679 | 0.8714 | 0.8746 | 0.8775 | 0.8801 | 0.8827 | 0.8853 | 0.8882 | (.8903
0.9011 | 0.9040 | 0.9061 | 0.9078 | 0.9093 | 0.9106 | 0.9117 | 0.9128 | 0.9141 | 0.9152
0.9307 | 0.9323 | 0.9333 | 0.9340 | 0.9344 | 0.9347 | 0.9348 | 0.9348 | 0.9348 | 0.9351
0.9530 | 0.9537 | 0.9540 | 0.9540 | 0.9538 | 0.9534 | 0.9528 | 0.9521 | 0.9542 | 0.9509
0.9691 | 0.9694 | 0.9692 | 0.9688 | 0.9683 | 0.9675 | 0.9666 | 0.9654 | 0.9640 | 0.9632
0.9804 | 0.9804 | 0.9800 | 0.9795 | 0.9788 | 0.9779 | 0.9768 | 0.9755 | 0.9738 | 0.9727
0.9880 | 0.9878 | 0.9874 | 0.9869 | 0.9862 | 0.9854 | 0.9843 | 0.9830 | 0.9812 | 0.9800
0.9930 | 0.9927 | 0.9923 | 0.9919 { 0.9913 | 0.9905 | 0,9896 | 0.9884 | 0.9868 | 0.9856
0.9960 | 0.9958 | 0.9955 | 0.9951 } 0.9946 | 0.9940 | 0.9933 | 0.9923 | 0.9908 | 0.9897
0.9978 | 0.9976 | 0.9974 | 0.9971 ] 0.9968 | 0.9963 | 0.9958 | 0.9949 | 0.9937 | 0.9927
0.9989 | 0.9987 | 0.9986 | 0.9984 | 0.9981 | 0.9978 | 0.9974 | 0.9968 ! 0.9958 | 0.9949
0.9995 | 0.9993 | 0.9992 | 0.9991 { 0.9990 | 0.9987 | 0.9984 | 0.9980 | 0.9972 (. 9965
0.9998 | 0.9997 | 0.9996 | 0.9995 | 0.9994 ] 0.9993 | 0.9991 | 0.9988 | 0.9982 | 0.9976
0.9999 | 0.9998 | 0.9998 | 0.9998 | 0.9997 | 0.9996 | 0.9995 | 0.9993 | 0.9989 | 0.9984
1.0 0.9999 | 0.9999 | 0.9999 | 0.9998 | 0.9998 | 0.9997 | 0.9996 | 0.9993 | (.9990
1.0 1.0 i.0 0.9999 | 0.9999 j 0.9999 | 0.9998 | 0.9998 | 0.9996 | 0.9994
1.0 1.0 1.0 1.0 1.0 0.9999 | 0.9999 | 0.9999 | 0.9998 | 0.9996
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9999 | 0.9999 | 0.9998
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9999 | 0.9999
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Table 2
f1 0 0.01 l 0.02| 0.03 0.04 0.05 0.06 I 0.07l 0.08 ‘0.0854
(> 0.220410.2375|0.2542 | 0.2706 | 0.2868 | 0.3028 | 0.3188 | 0.3348 | 0.3510} 0.3601
HWY 2.591912.538412.4903 | 2.4449(2.401412.3599 | 2.3196 | 2.2802 [ 2.2403 | 2.2173
F 0.4408 | 0.3847]0.3293}0.2750|0,2219| 0.1701 | 0.1197 | 0.0708 | 0.0239 0
gv 0 0.0010 [ 0.0028 | 0.0056 | 0.0097 { 0.0150|0.0217 | 0.0300 | 0.0402 | 0.0472
f —0.01]—0.02| —0.03| —0.04| —0.05| —0.06 | —0.07 | —0.08 | —0.0835 | —0.0852
v 0.203410.1851{0.1662 | 0.1462 | 0.1249 | 0.1015 ] 0.0746 | 0.0397 | 0.0211 0
HW 2.6441[2.7063]2.7754|2.8538]2.9458 | 3.0575(3.2051 | 3.4410 3.5974} 3.8150
F 0.4997[0.5585|0.6189 | 0.6807 | 0.7444 [ 0.8099 | 0.8779 1 0.9500|0.9770| 0.9909
R 0.0018 [ 0.0034]0.0067{0.0113|0.0179 | 0.0263|0.0371|0.0524{0.0591{ 0.0633
If the point x = O corresponds to the frontal critical point of the

body, at which U = O, then this point is singular, and #() will vanish
Fror Table 2 it follows that at this point (x = O)

zg** = 0.0854/ Uy

there.

fi = f1o = 0.0854,

(3.4)
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which gives the initial value 2£** In the numerical intergration of Equation
(3.3). If, however, as occurs at the leading edge of a glate or a profile with zero
nose angle, U # O, then z**m ; ®a 0 , and §3* = 0 , Finally, in the
general case, if U # 0 for a certain value x = x,>0 , then the 1lnitial
condition 1s 2Z**m z,**> 0 when x = x,> 0 , where z,"*= §,**2/y expresses
in spproximate, summary form the previous history of t%e development of the
boundary layer in the segment'() <C ¢ < zy. This value %”cmbewwfw
determining the constant of integration in the first order equation (3.3).

We can set up the following simple and practically convenient computa-
tional method for integrating (3.3). 4s 1s evident from Fig.3, the curve
FM (1) deviates only slightly from its tangent passing through the point
/1= 0, and therefore can be represented by Equation

FQ (f) = a — bfy + e (fy) (3.9)

where ¢(r, ) expresses the deviation of the curve from 1ts tangent; the mag-
nitude of %his deviation is shown in Table 2 and in Fig.3. The numerilcal
values of the constants a¢ and » , as 1s demonstrated 1n the following

Section, can be
a = 0.4408, b = 5.714 (3.6)

Carrying out the formal integration of Equation (3.3), we can obtain one
of the following two integral relations:

D‘I :x‘
f (@) = Yf_bT(E;— S Ut (z) {a + & If, ()]} do

<

3.7

x

1 o
** (1) = FaT) & U () {a + & [f1 (2)]} dx
[]

in which the constant of integration 1s chosen from the condition for finite-
ness of y, and £** when U = O .

As 1s evident #rom Table 2, the values of ¢ are small in comparlson
with the quantity & . Calculation of g, {x) and #**(x) could be obtained
by successive quadratures, starting by neglecting e 1n comparison wilth g

al’ (x)a': b1 38
—Zﬁyag*é U tdx (3.8)

but 1t is simpler to proceed differently. Let us introduce the notation
&, = e[jl(xkﬂ, where % are the abscissas of points of arbitrary division
of the interval x . Then, replacing the actual distribution e{x) by a
step~function, let us rewrite the second of Equations (3.7) in the form of
a recurrence relation e

V(o) % (@) = U #** (o) + @+ 5y | U @ar (39
Xp-1
enabling us, with the help of greviously prepared tables of powers of num-
bers with positive exponents and b — 1 , easlly to find g**, Close
to those values x, whleh correspond to very small 7, , we can moreover
gimpiy use the quadrature (3.8). An example of the calculation is given in
ection 5.

The numerical integration of the universal equations with two or more
form-parameters involves considerable difficulties, since it needs the use
of powerful electronic computers.

Comparisons with exact solutions show that the one-parameter approxima-
tion represénts the main part of the solution. Assuming that at least out-
side the region immedlately adjacent to the point of separation we can take
the correction introduced by the two- and three-~parameter approximations to
be small in comparison with the main part of the solution, let us content
ourselves with expresslons of these corrections, calculated with the help of
series expanded in powers of the form-parameters. The coeffilcients in these

h(w) =
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series are expressed as functions of the reduced coordinate ¢ , being inte-
grals of a system of ordinary linear differential equations, more easily
amendable to numerical integration on computers than the two- or three-para-
meter universal partial differential equations.

4, Oonstruction of the solution of the multi-parameter universal equation
in the form of a series of powers of the form-parameters, We shall seek the
solution of the general universal equation (2.8) in the form of a power
series [5]

@ (2,8) = D@ (§) + D, (B) /1 + Dy (§) 1P+ Q, (B) /o +
T D (B) 12® + Dy (8) fufe + O (B) fo + - - (4.1)

First of all let us expand the guantities ¢, 7 and ﬁ‘ in power series
with respect to the form-parameters

E= 0o+ Cufs + Cufi® + Cofe + Lanfi® + Lifefifo+ Cofa o o
H = Hy+ Hf, + Hyf2 + Hyfy + Hynf® + Hypffs + Hofs + ... (4.2)
F = F0+ F1f1+ F11f12 "]‘ szz + F111f13 + F12f1f2 + sta + ...

and let us note that the constant coefficients €i5... @and H,y,..., in accord-

ance with Formulas (1.6) and (4.1),(1.12), (bearing inmind that a dot denotes
dififerentiation with respect to £ ) are given by

Gi. = Baii (), Hy. = — 5Dy (o) (43

after which the constants F,, .. according to the first of Formulas (1.4)
are determlned thus:
Fo:2§01 F1:2(€1'—H0—‘2)1 F11:2(§11—H1), F2:2€2

F111:2(C111—H11)a F12=2(C12_H2), Fy =20, . ..

Substituting these expansions in Equation (2.8) and equating coefficients
in simllar one-term powers of the complex form-parameters, we obtain the
following system of ordinary linear nonhomogeneous differential equations
(5] for the unknown functions &, ., (e):

Ly (@i.) = — (1/Bo*) §ij.. D®," + Ty,
(Dij... =05, =0 for £ =0, Qi -0 for £ — o0 (4-5)
k=i+i+.. 06 0...=12,..)
Here by 1, we understand the linear operator
Ly = D*+ ®,D2 — 2k®; D + 2k + 1) ®,", D =d/dt (4.6)

The Function 3,(z) satisfies Blasius' equation (1.8), whilst the functions
I‘U,,,(g) , appearing in the right-hand side of the equation with the same
indices x as the operator 1,, are expressed in terms of the functions
%,,,,.(2) and the constants ¢,,,.., Hiu... ,» 8lready calculated in the inte-
gration of equations with the index of the operator less than x .

(4.4)

We reproduce the expressions for T, ,, (g) , corresponding to indices
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¥ from 1 to 3
I, = (1/B) (@2 — 1 + (Hy + 1) Od;] (4.7)

Ty = 20,2 — 30,@," + (1/By%) IH,®D," — (& — Hy — 1) O®," —
- (3;1 - 3H0 "- 5) (Douq)l + 2 (gl - HO_ 1) (Do.d)l']

F2 = (1 /Boz) ((DO.(DI. - q)(l“q)l)

Iy = 60,0, — 30,0,," — 5O, Dy + (1/B¢°) [(28; — 2H, — 3) X
X (D2 + 20,0,,) + H, PP, — (81 — Hy) (@D, — 20,4 3D,"D,) —
- (‘:1— Ho— 1) (Dod)u“—‘ (3€1 - 3Ho - 5) cI)1(1)1”- (5€1— 5Ho— 9) (Do”(Du]

Iy = — 30,@," + 6@0,D, — 50,"D, — (1/B,%) [(§; — Hy — 1) DD," +
+ (5§1 _ 5Ho - 8) (DO“(D‘Z - qu)o(po" — (4€1 - 4H0 —9) ‘Do.d)z‘—
— 0,2 + O,D;" — 2070, + 207D, — §, 20D, — 30,"D, — O D7)

Fs == (1 /302) ((Do.(})z’ - (I)O"CD2)

The peculiarity of Equations (1.5) and (2.8) noticed in Sections 1 and
2 survives also in the system of equations (4.5), since, according to the
first of Equations {(4.3), the quantities €i15.,. » appearing in the right-
hand side of the equations of system (4.5), require for their determination
a prilor knowledge of the functions &, ., (g), being the solutions of the
same equations. Thanks to the linearity of the system (4.5), this difficulty
i1s easily eliminated. Setting in system (4.5)

Dy (&) = Xy (§) + Ly Y. (8) (4.8)
we arrive at a combination of two linear nonhomogeneous systems
Ly (X45..) == Tij, Ly (Yi;.) = — (1/B,%) ©,0," (4.9)

with the same zero boundary conditions for the functions X J"_(g) and
¥,,...(g) as for the functions &, . (g) in system (4.5).

After the functions x,,, .. (g) and ¥, (£) are determined and once and
for all tabulated, the quantities (,,, ,,6 can be calculated according to
Formulas -

" . BoXj;... (0)

Sij... = T e (410)
1— Bo¥y;  (0)

The numerical integration of the system of equations (4.9) was effected
.n the Leningrad Computation Center of the Academy of Sciences, USSR on the
E3CM-2 (BESM-2) computer. Tables were constructed of the functions X,, Xj,,
Xy, X1y X120 X3 and Yy, Yiu=Y,, Yy = Y, = Y3, and from them were deter-
mined also values of the constants {, &y, Lo, Ciyyy bygs 833 Hyy Hypy Hay Hyyy,y Hiy,
Hy Fy, Fyyy Fyy Fyyy, Fuy, Fa

Since 1t 1s not possible to publish the tables of the functions ,r”_._(g)
and ¥,,...(Z) , we reproduce those expansions (4.2), which are the most
important for practical application, using the numerical values of the coef-
fielents €,y .., Higeuur Fug...

The following values were obtalned:
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{ = 0.2204 4 1.7350f, — 2.4188f,2 — 0.2992f, 4 18.234f® — 0.1653f,f, 1+ 0.0937f; +
H = 2.5919 — 5.4282f; + 21.914f2 - 1.4741f, —
— 163.067,® — 4.8076f1,f, — 0.50613f, 4 . .. (4.11)
F = 0.4408 —5.7139f,+ 6.0189f,2 — 0.5984f, — 7.3611f,3 — 3.2753f,f, — 1.0423f, +
Increasing slightly the speed of convergence, let us isolate in these
serles the already tabulated one-parameter portions which correspond to con-

dition o= fa= ... = 0, Then we obtaln the following formulas for allow-
ing for the effect of the second and third form-parameters:

I

L=tV (f,) — 0.2992f, — 0.1653f,f, + 0.0937f5 4 . ..
H = HW (f)) + 1.4741f, — 4.8076/,f, — 0.50613f, + . .. (4.12)
F = FPD (§) — 0.5984f, — 3.2753f,fy — 1.0123f, 4 . ..

which, after the two-parameter unlversal equation has been integrated, can
be substituted for greater accuracy.

As is shown by the first comparative calculations, for determining the
quantity z**(x) , and consequently, the momentum thickness &**(x) , it is
sufficlent to use the simple method, described at the end of Section 3, only
in certaln cases, possibly allowing for the effect of subsequent form-para-
meters in the correctlon ¢ .

27 £E
5-*) 1 ] 1; 1 21 004 I ] \ 3
B R Enmam=NN;
o 7 )% 1 - e 1 i
e — 008
23 — | -1}12‘ - \ﬁ\
? 04 16 o T 04 08 77 o1
Fig. 4 Fig. 5

5. An sxample of the caloulation and comparison with the exact solution,
To illustrate the arguments propounded in the preceding Sections, let us
consider the case of a sinusoidal velocity distribution at the outer boundary
calculated by Terrill [10], which corresponds to the streamline flow past a
circular cylinder of an irrotational stream of ideal incompressible fluid.

Let us agree in the present Section to deal with the dimensionless quan-
titlies, obtained by dividing the dimensional longitudinal lengths and velo~
clties by the radlus of the cylinder and the velocity at infinity, respec-
tively, and the transverse ones by the same quantities, but decreased by the
factor /R , where the Reynolds number £ 1s constructed from the radius of
the cylinder and the flow veloclty.

In these dimensionless quantities we shall have

' ou o
U —=sin x, Z**:S**?‘, (‘07) — —%'ﬂ (5'1)

1§ 4 we present for comparison two curves of the dimensionless quan-
tity 8**(x): one calculated by the method described at the end of Section
3 — without correction for the effect of the second and third farm-parameters,
whilst the other corresponds to the exact solution. In general nature of
the growth of the quantity &**, especially close to the separation, there
is scarcely any increase 1in the relative accuracy of the calculation (3in Pig.
4 thg maximal discrepancy at the point of separation does not exceed 3 per
cent
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In Fig.5 are given curves of the varlation along the boundary layer of
the values of the three form-parameters

fi{z) = z** cos z, Fa (x) = — 2%*2 gin 2z, fa(x) = —z**3sin 2z cos  (5.2)
We can observe the completely insignificant value of the form-parameter

Ja everywhere except in the neighborhood of the point of separation, and the
rather small value of 7, 1n the

08— accelerating part of the layer.

: r l Probably this explains the success
Au 1/ - of the application of the one-
~(?7L=” {7 . 4 parameter method to the majority

J J \ of practical calculation .

Fig.6 shows the distribution of
the dimensionless quantity

(Ou / ay)y:o‘

characterizing the local coeffici~-

ent of frictlion at the surface of

i j the cylinder. As 1s obvious from
the above, the one~parameter appro-

ximation (1) is sufficient to obtain

‘ a satisfactory result, Inclusion

of only the second term (succeeding

™~~~
I S

terms are very small) even in the

]
a4 8 12 16 first of Equations (4.12) produces
almost complete agreement (in Fig.
Fig. 6 6 indicated by the circles) with

the exact solution (2) everywhere
except at the reglon of separation, where, evidently, the corrections based
on the use of the power serles are no longer applicable. The method explained
in the proceding Sections 1s applicable not only to the lsothermal boundary
layer in an incompressible fluid, but also allows immediate generalization
to the case of the boundary layer in a gaseous stream with large sub- and
supersonic velocities, when it has become impossible to neglect the effect
of compressibllity of the gas, processes involving the liberation and propa-
gation of heat, and also the occurance of dissoclation of the molecules of
the gas.

6. The universal equations of the boundary laysr in a stream of homoge-
neous gas with large velooities. Let us agree in what follows to denote by
the indices: a, the thermodynamic quantitles for adiabatlically and 1sen-
tropically retarded gas inslde the boundary layer; 1, the same, but outside
and on the outer surface of the boundary layer; e and p , the dynamic and
thermodynamic quantities on the outer surface of the layer and on the wetted
surface of the body. Let us for simplicity take a linear law connecting the

dynamic coefficlent of viscosity of the gas pu with the enthalpy » = T
1
p/py = Chilh, C = (Ty/T)"(Ty+ T)/ (Tw+ TJ) (6.1)
Here 7, 18 the constant in Sutherland's formula.

Let us pass, in the boundary layer equations, from the usual physical
coordinates and veloclties x, y, u, v to new varlables x, ¥, U, V, by means
of the Dorodnitsyn-Stewartson transformation (p 1s the density of the gas,
¥, 1s the Mach number at the outer surface)

x 3k—1 k+1 oy ¢
X = Scxf“‘—“ dz, Y = y2¢ 0 S Ldy, k=2 (6.2)
e v

0



Equations and parametric approximations for boundary layers 87

. . h u? (cont.
U= "u, V=27 xe=gp=1—% n=gz
1

oy k41
o 2(Ic 1) oY Fﬂg) 2 (k—1)
v C Le [u-al} + (Pe Ye
We shall dntroduce, moreover, the stream function ¥(x, ¥)
= g%/ aY, V= — 8¥/6X (6.3)
and the heat function
S = (ha/hy) — 1 (6.4)
Then we obtain [11] the well-known system of equations (v 1s the kinema-
tic coefficient of viscosity of the gas, ¢ 1s the Prandtl number)

v v oW a2v sy
ov oW o¥ oW X
oY 9X0Y ~ 39X oY° Ue Tx (1 +8)+ v 55
v aS ov¥ oS8 — 028 _( cj) [( 1 8‘}’) :H
3 7% ~oX 3 ~ 3 (ov* s\ T, av) ||
o .
lII:“aT’v_O S——S for Y:O, W—)U S 50 for Y'—>OO(6‘))
6‘1’

=Uy(Y), S=8,(Y) for X=X,

We shall introduce for consideration the following two conventional thick-
nesses of the boundary layer in the variables of (6.2): the displacement
thickness A* and the momentum thickness aA**

[e0] [ee]
. U .
A* = 1 — =+ 8 |dY, A¥* = 1——— dY (6.6)
Ue Ue
0 0

Then the equation of momentum, easily derived from (6.5), preserves the
same form as in incompressible fluild (a prime denotes differentiation with
respect to X)

dZ** _ F df U, U, -
X =v a—u Pt 6.7
Here
A**2 UB’A**z A* . a (U / Ue) } >
Z** —_ o , =S ———~..——‘v1 , H - H—A** , g = [8_—_———(Y/A**) Yo (E)S

F=2I[0— (24 H) /]

If now, completely repeating the processes described in the foregoing
Sections, we pass from the variables X, ¥, ¥ to the new "reduced” variables

X =X, E=BY/A* @ =BWY/(UA*¥) (6.9)
introduce an infinite comblnhation of form-parameters

fo=%, fx= USTd"U,1dX") Z*** f, = | (k=1,2,..)) (6.10)

and take them together with the reduced ordinate E as the new combination

of independent variables, then the system of equations (6.5) takes the fol-
lowing form, derived by S.M. Kapustianhskli, post-graduate of the Leningrad
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Polytechnic Institute: (6.11)

oG
PO | FA42h B0 | fi D\ 11 Nl (0D 2D 9020
+ 5 O el — () 8] = e D G w

S Fi2f
ae 1O g

oo
d (0D azm) 5 Nlg (0065 oM oSy
( - “\ 98 of,  0f, 9

a8

1 7l ,
= =0, S == S, tor E= 0 (52-—»1, S —~0 for £ oc
D = @, (§), S=84(8) tor fy=1=10l0/2ls, 1 =fr=...=0

In this system the quantitles 9, are defined Jjust as in Equation (2.6),
but are expressed in terms of the new values of F and #,, given by Equa-
tions (6.8) and (6,10), whilst ¢,= 2n(x ~ 1)r,. Regarding the normalizing
factor B,, this, a8 previously, is chosen from the conditions that when
7i® fa= ... = 0, Equation (6,11) transforms into the self-similar solution
of Blasius' problem Qo(g) for the plate in the presence of heat transfer
and dissipation (the dot is the sign of differentiation with respect to £)

O, + DD, = 0 (6.12)
8o+ 0DeSy + 2 (0 — 1) %y (D™ + DyDy™) = 0, %= ue’/ (2hy)

0
(I)o—_—(I)O.:O, S0=Sw, for a:O, d)o."*’j., So’—)o for £—>oo

Thanks to the assumed linearity of the relation between viscosity and
temperature, &,(g) does not di“fer at all from the corresponding function
in incompressible liquid, and consequently 5, also is the same. It should
not be forgotten, however, that §#,, according to the accepted definition
(6.6), becomes now different. We shall have

oo o8]

oD oD b —
BG:XEE(1_a_a)d§:;XcDO (1 — ®,) dt
o O
Ax L% ) (6.13)
Hy = g = 3; \(1 = ®F + 80 d&, & = B®,” (0)

(]

Equations (6.11) contain a number of parameters characterizing the condi-
tions of actual individual problems. PFirst of all, this 1s the assumed con-
stant value of Prandtl's number ¢ . Such also is the dimensionless quantity
S,= (n,/h, ) — 1 , expressed in terms of the actual value of the "temperature
factor" 7,/T, and the Mach number N_ of the free stream, which are char-
acteristic of each individual problem, according to Formula

Sp =Ty T U + Yy (k — 1) Mot — 1 (6.14)
The local "compressibility factor" of the gas x , depending on the
"local” Mach numbers N, u,/8, or N."= u./a*, (where a* 1s the eritical

velocity of the gas outside the boundary layer) and in the case of homoge-
neous gas on the physical constant of gas x = o,/b., according to Formulas
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xz_k_’z__i_Mez/O_Jr_ k—z—i Me2)= Z;iMe*z

appears in a number of arguments of (6.10) and does not violate the univer-
sality of the system (6.11). Moreover we retain the possibllity of carrying
out in advance once and for all the integration of the system (6.11) for
different values of the parameters g, §, and also % (0<{%<(1). The latter
is permissible if in Equations (6.11) in the first approximation the differ-
entiation with respect to x 1s dropped. The term "universal” for the sys-
tem of equations (6.11) can be retained in a certain more restricted sense
than before,

Retaining the terms "one-", "two-parametric”, and so on, depending on the
number of form-parameters f,, we obtain with ¢ = 1 a "one-parametric” sys-
tem

FEY FO 4 2f ) a2 I (3(1)(1) 2 W
P + B ()] 52 -+ B 1— 5% + S = (6.15)
. .1_ ) (a(p(l) 931 . Qv ach(l))
T Bog? AT T T 01 oE®
o254 of, ov asw 1 PO 4 (amm asw W asm)
dE? 2B¢? o%, By? LA af1 LTH 3%

(D(l) — (-D-(l) =0, S(l) . Sw for £ =0, (D'(l) — 1, S(l) -0 tor £ oo

oM = @, (8), SW = 8,(8) tor n=0

The tables already compiled for the one-parametric approximation of the
universal equation (6.11) by means of the numerical integration of Equations
(6.15), should agree with the earlier published one-parametric method of
Cohen and Reshetko [12]. The latter method is based on the intuitive assump-~
tion of the sulitability of using for approximating functions a class of exact
solutions, corresponding to the power of the stipulated external velocity
[11], and derives the relatlion of this to the decrease of friction and the
onset of separation. Moreover, the fundamental calculational convenlences
of the method occur only in a narrow range of values of the parameter JS,.

7. The boundary layer in gas in dissociated equilidrium. In the case of
the boundary layer in gas in dissocliated equilibrium the universal equations
become yet more complex on account of the emergence of a number of new fac-
tors. First of all, in this case the connection between the dynamic coeffi-
clent of viscosity and absolute temperature can no longer be taken as linear,
and we have to adopt the general nonlinear relation of Sutherland ( up to
4000 °K) and thereafter use special formulas. Moreover, the guantities
and @ are no longer constant, and the density ratio p/pl= p cannot now
be expressed, as it was in the nondissociated gas, by means of the inverse
ratio of the corresponding temperatures, but requires speclial values from
tables of the termodynamic functions for air or other gas as a function of
the dimensionless enthalpy » = h°/h1 and the pressure p . The same
applies also to the quantity ¥ = up (u,p_), which In the case of a homoge-
neous, nondissociated gas and for a linear viscosity law would be equal to
unity, whilst in the present case 1t is a function of the dimensionless
enthalpy and pressure.

If we ignore the influence of pressure, which in a wide range of ratlos
of air pressure p to the atmospherec pressure p, (107¢<{p /p, < 10)
is small, then we can assume that ¥ = ¥(n°/nr°,) and for a given K, that
p°= p°(n°) . Moreover, for air in dissociative equilibrium up to tempera-
tures of order 9 000°kr we can take the Prandtl number ¢ as constant,
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whilst the Lewis number 1s also constant and equal to unity, With these sim-
plifying but fully plausible assumptions, and using dimensionless variables
x

1

- y
X = Spwpwdz, sz_‘?_dy (7.1)
[t]

p¥p* o*
0

where the asterisk superscript denotes quantities referred to an arbitrary

glven state of gas, wlth the existence of a stream function ¥ defined by

the system of equatlons

_ oYy o _W*p* BY) e ]z_‘i‘{ 7.2)
“Tav U T e [# (5) + () ox (

The boundary layer equatlons can be represented in the form

‘l"iﬂ_~?l"_32=‘2u‘f“_e+v*i(1v‘2’1)

. Y 3xey ax avE pledax ' | av\ am (7.3)
R R i SR RS
w:(‘;;:o, h=hy, for Y =0 %‘f_,_me(,r), hosh, (X) for ¥ —oo
=), h=h(¥) tor X=X,

The density ratio p,/p &ppearing in the right-hand sides of both equa-
tions of the system (7.3), 1s expressed in the terms of the given functions

p® and x , thus:
Be/ P = (py/ P1) (1 / P) = p° (k") / p° (k) (7.4)

In accordance with the notation (6.2) the numerator of thils fraction is
expressed in terms of «x
p° (h,%) = p° (%) = p° (1 — %) (7.5)
The conversion from the system of equations (7.3) to the universal system
was carried out by N.V. Krivtsov {post-graduste of the Leningréd Polytechnic

Institute) Just as in Section 6, or in the preceding Sections for the case
of the isothermal boundary layer in incompressible fluid.

He introduces the same set of form-parameters with respect to the external
form
fo=1% f = u 1@ u,/ dX*)2%%%, 2z%* = A% /v, (k=12,..) (1.6

and shows that 1f we take for the definitions of the dlsplacement thickness
A* and the momentum thickness aA™* Expressions

A® =§°(Ez_ i) dy, A% = §° 1(1 — _"_)dy .7

p L Ue Ug

then the momentum equation will have the same form as in the case of the
incompressible fluid (primes denote differentiation with respect to X )

dzs* _F dfl._.:‘_‘_,_ ug”
ﬁ——“—e ’ dx Ug F+ u,’ h (1.8)
a »
F=2{0 — @2+ B #}, Ca[i%%%]l’w’ H=_AAT;

Of the same form also is the recurrence differential equation for the
differential of the form~parameter 7, with respect to XY , and consequently
also the form of the functions 08,(f, fas «+.).

Tra?sforming in the system (7.3) to the new variables (Bo is a normalizing
factor .
X=X, E = ByY/ A%, O = B,¥ / (u,A%*) (1.9)
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and introducing, just as before, the form-parameters (7.6) into the number
of independent variables, we obtain the universal system of equations (in a
more restricted sense than in the case of the incompressible fluid, es was
pointed out in Section 6) (g,= 2nys,)

i[N (h) "_’3] + 20 @0, 1 [P° 4 —x»_ (‘9‘1’ ﬂ - (7.10)

98 o8 | ' 2By 9 | BEL o0 (1) 3
= 53 2% (% g, ~ ar.oe)
R R e S T
o .
@:%:0, R =h,° tor E=0, %%—»1, h° -1 —un ftor £ o0
Q=@ (8), h°=1h(E) tor fo=n, fi=fa=...=0

aThé rormalizing constant B, is chosen so that the functions %,°(2) and
ho °(£), representing the solution of the self-similar problem, corresponding
to constant external veloclty (u,= u,) , satisfy the system of equations of
the form

(7.41)
d o @Dg] | g @Dy _ i[zv (he?) dho"] 0.4 1 2 Niho d2¢>0)2= 0
&[Mho.)??]. T =0 E[Fel ] G N o) (S
Dy= @y = 0, h'= hwo for £=10, @Oy —1, Ry — 1 —n for £ — 00

representing the generallization of Blasius' problem to the case of a gas in
dissociative equilibrium. Here #,= u 2/2h 1s a function of only the given
Mach number A, . The normalizing constant 5, , as in the preceding cases,
is determ%ned from Equation 2503- F, but since, by virtue of the lack of
"autonomy” of the first equation of system (7.11l), (, will now depend on

kh, , 0o and x,, 1t is evident that B, needs to be calculated for different
values of these parameters.

In the universal system of Equations (7.10) the quantitles h,°, ¢ and x
play the roles of parameters characterlzing the actual individual problems.
The parameter A, 1s analogous tc the parameter S, of the foregoing Section,

In the more general case of the boundary layer in a gas in nonequilibrium
dissocliation, there appears in the universal system of equations the diffu-
slon equation also, including as a new unknown the concentration of atoms.
Granted & series of plausible simplifying assumptlons, even in this case,
the universal system can, for a selected combinatlon of values of the physi-
cal parameters, be integrated once and for all, while the "reduced" stream
function, enthalpy and concentration can be tabulated. The difficulties
arising here are of a purely technical, computational character and can be
overcome by applying the method of successive approximations.
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