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Exlsting analytic methods of solution of the equations of the laminar bound- 
ary layer are based on the representation of these solutions in the form of 
power serles of certaln parameters, either characterlzlng the external dis- 
tribution only (Falkner [I], GDrtler [~, Shkadov [3 and ~] and others), or 
else taking account in addition of the development of the boundary layer 
(Loitslanskll [5]). In all these methods the determination of the coeffici- 
ents in the power series reduces to the integration of systems of ordinary 
differential equations possessing the property of universality in the sense 
that neither these equations themselves, nor the corresponding boundary con- 
ditions, depend upon the conditions of a given particular problem, and con- 
sequently they can be integrated numerically in advance once and for all, 
and the results tabulated. The effectiveness of the application of such 
methods is limited by the speed of convergence of the series, which decreases 
sharply in the neighborhood of the point of sepatatlon of the boundary layer, 
this being a singular point of the equations at which the power series are 
inapplicable and must be replaced by series of another type, containing 
together with power terms, logarithmic terms also. 

One of the ways of improving the analytical methods can be that recom- 
mended in the present paper: the method off reducing the fundamental equa- 
tions of the boundary layer to universal form, in the sense already speci- 
fied. The possibility of such universalization of the boundary layer equa- 
tions themselves by transferring the parameters expressing the influence of 
the external conditions, characteristic of each particular problem, to the 
number of independent variables, is demonstrated in examples of the boundary 
layer equations in incompressible liquid, and in uniform gases and gases 
under dissociative equilibrium, at large velocities of motion. 

The fundamental significance of the method described consists in the 
replacement of the series by the use of tables composed once and for all by 
means of direct numerical integration of the universal partial differential 
equations. 

The difficulties mentioned above, connected with the presence of a singu- 
larity at the point of separation, whilst emerging anew as a result of the 
increase in the number of independent variables in the differential equations, 
are at the same ~ime transferred from the field of analysis to the field of 
machine computation techniques, and, because of the need to carry out this 
whole calculation only once in the compilation of the tables,thlscan scarcely 
be counted amongst the essential shortcomings of the method. On the other 
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hand, it is necessary to bear ~t mlnd the fact that the increase in the num- 
ber of arguments carries t~e inconvenience associated with the use of tables 
with a large number of"entriesE This forces us to consider the question of 
the choice of such a sequence of parameters that the use of the first two or 
three of them should lead right away to acceptable accuracy of the results. 
To serve as such a system of parameters for the boundary layer in incompress- 
ible fluid, in the present paper we shall take a set of dimensionless quan- 
tities, expressing in terms of powers of the external velocity, its succes- 
sive derivatives with respect to the longitudinal coordinate, and also by 
power series the relationship of the square 6f the momentum thickness in the 
given section of boundary layer to the kinematic coefficient of viscosity. 
The first term of this set comprises the "shape parameter", used in the vari- 
ous approximate one-parameter methods, based on the application of the inte- 
gral momentum condition and discriminating by its choice between this or that 
form of velocity profile in the boundary layer cross-sections [6 and 7]. 
Moreover, even the first approximation, calculated by means of integrating 
the universal equation with one parameter, leads to the same result as the 
one-parameter method, if in the latter we take for the "competing" velocity 
profile in the boundary layer sections the class of exact solutions of the 
boundary layer equations corresponding to a linear distribution of velocity 
outside the boundary layer [8 and 9]. As is well known, this approximation 

11 • , t  

which will be called the one-parameter solution, depicts in a completely 
satlsfactory manner the actual motion in the boundary layer for the majority 
of velocity distributions encountered at the external surface of the bound- 
ary layer. It may therefore be th~ughtthat application of the "two-parame- 
ter", or in the extreme case, the three-parameter approximation to the 
solution of the universal equations will prove to be completely satisfactory 
for a brosd family of problems, and therefore it will not be necessary to 
make use of the tables with an excessively large number of entries. This 
fact is confirmed by the comparison with the exact solution, made in this 
paper, for the problem concerning the boundary layer in incompressible fluid 
with a sinusoldal distribution of velocities on the outer surface [I0]. 

The set of form-parameters here proposed, thanks to their inclusion of the 
determination of the momentum thickness enables one to obtain, although only 
approximately, the solution of the well-known boundary layer theory problem 
of "continuation", i.e. calculation of the influence ot the previ0us history 
of the flow in the boundary layer on its development in the portions of the 
layer further downstream. 

As is shown in the final sections of this paper, universalization of the 
equations of the laminar boundary layer is accomplished not only in the case 
of isothermal flow of an incompressible fluid, but also in the more general 
cases of the boundary layer in a stream of homogeneous.gas, and also of gas 
in dissociative equilibrium, with high velocities of motion. 

The enumerated cases are not the only cases permitting universalization of 
the equations and the obtaining of their one and multi-parameter solutions. 
In particular, universal equations of this type can be derived from the equa- 
tions of nonequilibrium boundary layers, the boundary layers in magnetohydro- 
dynamics and other physically more complex problems in the theory of the lami- 
nar boundary layer. What is more, the same method of universalization of the 
equations and boundary conditions can be useful in the ~olution of problems, 
relating not only to the theory of the boundary layer, but also to the other 
problems where the integration of nonlinear partial differential equations 
of parabolic type is necessary (for example, to nonlinear problems of heat 
conduction). 

1. ~ e  £8o~hez'~l  "oo'~Le.,~' letter in  ~ o o ~ e e e i b ~ e  f l ~ A j  ~he di~fe~en-  
~£0~ eqmk~io~ fo~ ~he ~eA~oed e~eo~ f ~ o ~ i o n .  The laminar boundary layer  
equation in incompressible fluid and the conditions for isothermal flow 

reduce to an equation for the stream function ¢(x,y) 

Oy Ox Oy Ox Oy 2 = ~ Oy a 

Oq) __ 0 for y = O ,  Oxp O~p 
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Here we adopt the usual boundary layer theory notation : x, y are the 

longitudinal and perpendicular coordinates, u is the longitudinal velocity, 

uo (Y) the distribution of velocity at a certain given section of the bound- 

ary layer (x - xo); U(x) is the longitudinal velocity at its outer face, 

and ~ is the cQefficient of kinematic viscosity. 

Let us transform from the variables x, y, $(x, y) to the new variables 

x ,  ~, ~(x, g) , by substituting in (I.i) (1.2) 

x=x,  Y=<so/~' ¢=~-hVj/ •~) (x)= V 
0 

Here ~$* is the momentum thickness; Bo is a normalizing constant which 

is determined later. 

Let us carry out the transformation (1.2) in Equation (1.1), making use 

also of the well-known momentum equation, written in the following of its 

various forms (primes here and in what follows denote differentiation with 

respect to x ) : 

6"*' U'F z**" F / U" U" 
6"* - -  2 U / ' -~ --~- , =- -U- F -~- -~  / ( 1 . 3 )  

Here we have introduced the conve~tlonal boundary layer theory notation 

F = 2 [ ~ - - ( 2 + H ) / ]  ~ ---- V$[u- /U)  ] H 6.  
' Lo (y / 6**)J~= o ' = 8"--~ 

6*  = 1 - -  U dg ,  / - -  v - -  U'z**,  z*'* = - -  ( t . 4 )  
V 

0 

Let us reduce Equation (I.i) to the form (the dot denotes differentiation 

with respect to ~ ) (1.5) 

0sO F + 2 / f D 0 2 ~  / [ ] _ _ ( 0 ~  2 O0 O~ 

( I ) = ( I ) ' =  0 fo, ~ = o ,  ( D ' - - ~ t  fo,  ~ - - , ~ ,  O ' =  ~ o ' ( ~ )  ~o, ~ =  

Making use of the "reduced" stream function ¢(x, g) we shall have, in 

accordance with (1.4), 

F ~ oo0__(, (O'er__ -='-~oi ~(lk °*~d~-u~¢] 0 . 6 )  
----- ~ ---- Bo ko-~]~___ o, H - -  

0 

For definiteness let us take for the function {o(g) the simplest self- 

similar solution of the boundary layer equation, corresponding to conditions 

U ----- cons t ,  U '  -~ 0, I ----- 0 ( 1 . 7 )  

(quantities relating to these conditions will hereafter be denoted by the 

index zero) and choose the normalizing constant B e so that Equation (1.5) 

in conditions (1.7) coincides with Blaslus' equation (*) 

*) For the function io(~) we could take any self-almllar solution of Equa- 
tion ~1.5], whilst the normallzlr~ constant B o is chosen so that this equa- 
tion coincides with the well-kz~wn Falkner,Skan equation in Hartree's form; 
in this connection see also [53. 
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0"" + 0o0o"  = O, 
For this we must set 

0 o = (I) o'-~- 0 for ~ = 0 ,  q~o' ~ 1 

F o =  2go-----2Bo ~ 
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(1.8) 
for ~ -+ 

(t.9) 
Hence from the well-known solution of Blasius' problem it follows that 

Bo = Oo'" (0) = 0.470 (IA0) 
~kJ_ug use of the definition of the momentum thickness (1.2) and making 

the substitution of variables in it, we obtain the general relation 
oo oo 

I e ( l - ¢ ' ) d ~ - - I  ¢o'(1 - ¢ o ' ) ~  = Bo (1.11) 
0 0 

which enables us to obtain a closed expression for the quantity H in terms 

of the limiting value of the difference of the functions ¢(x,~) and ~o(g) 

as g -+ ~ 

We have 
oo 

-- ~ ( l - - ~ ' ) d ~ =  H ~ =  ( l - - O ' ) d g  ~ ' ( l - - ~ ' ) d g  = - ~ o  
0 0 0 

oo oo 
t 

- -  Bo I ( i  - -  ~o ' )  d~ -k l ~o I @ o  - ~ )  d~ 
o o 

Assuming the separate existence of the last two integrals, we obtain the 

required expression H 

H = H o -~ ( t / B o )  (Oo - -  (D)~.+~, H o = 2.592 (1.12) 

2.  Ur~vez, ee.l oquat£on of  the ~oundlz .y  l e ~ o r  ~ an inoom~ron~.blo f l u i d .  

The solution of Equation (1.5), containing the arbitrary function U(x) and 

its first derivative, is a function of the variables x, ~ and a functional 

of ~ ~ = (D (x, ~; (U}) (2.1) 

Let us introduce for consideration the ~nfinite combination of form- 

parameters [5] 

/k = u k - l ( d ~ U / d 2 )  z**~, z** = 6**+°/v ( k = t ,  2 . . . .  ) (2.2) 

the first of which JPl coincides with the usual form-parameter j" of the 

one-parameter methods. By virtue of arbitrariness of the function U(x) the 

form-parameters ~ (x) form a system of independent ftudctions satisfying the 

recurrent ordinary differential equation, 

(U / U') flfk' = [(k - -  t) I1 -1- kF] [k q-/~+~ (2.3) 
which is easily derived from (2.2) by means of direct differentiation and 

use of (1.3). 

We shall show that the equation and the boundary conditions (1.5) can be 

satisfied by Expression 

• = ¢ (~; { U } )  = ¢ (~; I~, I~, • • .) (2 .4 )  

which does not contain x explicitly. In other words, we shall show that, 
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making use of expressions, in accordance with (2.2), for th~ "reduced" stream 

function ¢ and the normal coordinate ~ , the influence of the external Bow 

on the flow in the given section of She boundary layer can be expressed by 

means of the combination of form-parameters (2.2) only. For we note that, 

according to (2.4), Equations (1.6) and (1.12) may be rewritten thus: 

= ; (1,, 12 . . . .  ), 11 == I I  (J,, f ~ , . . . ) ,  F =- F (/~, 12, • • .) (2.5)  

so that the right-hand side of the recurrence relation (2.3) is also a func- 

tion of the pqrameters f~, f2, .... We denote this as follows: 

1( k - -  ~) f l  ~ ~:F] fk -~ fk+l --- 0k ( f l ,  /2, • • -) (2.6) 
Let us choose the form-parameters /k as the new independent variables 

and let us ~arry out in Equation (1.5) the substitution of the differential 

operator according to Formula 

o \~  o u '  o 
. . . . .  ' - -  O k - -  ( 2 . 7 )  O. k-:l"l ]k O/k U / ,  k=l  Olk 

fo l lowing  d i r e c t l y  from ( 2 . 3 ) .  We s h a l l  have 

0 ' 0  F + 21, 0~¢ I ,  Pl {0¢]2] ~ ..~_ o@ roma am a,¢~ 
~ e  + - -  ¢ + - -  = - -  o~ 2Bo' ~ Bo = k ~ o~ / ~ Bo~.~= 0~ O~ 0& ~ b-~/ (2.8) 

(I) = (I)'--- 0 for ~ = 0 ,  (I) - -+ t  for ~- '+°c  

~nls equation in the case of the ~sothermal boundary layer in incompress- 

ible fluid serves in fact for the fund&mental universal equation, which has 

been referred to in this paper. 

In fact, in this nonlinear third order partial differential equation, as 
also in the bour~ary conditions, there are no ~g~itudes characterlzlr~ the 
actual specified problem. Equations (2.8) are one and the same for all prob- 
lems in the theory of the Isother~l boundary layer in incompressible fluid, 
in which the velocity distribution on the outer boundary is continuous and 
admits the existence of successive derivatives at all points of its rar~e. 
They all reduce, accordingly, to nt~merlcai integration of Equa.tion (2.8) o~ce 
and for all and the construction of tables for the dependence of the reduced 
stream function i and its derivative ¢'= u/U on ~ suad the form-parame- 
ters f:, f2, .... For this purpose, eventually, we have to use an electro- 
nlc computer. The function F appearlr~ in the equation is expressed in 
terms of the functloQs g sa~d H , which can be detern~Ined only after inte- 
gration of Equation (2,8}. This circmmstance does not pose any f~ntal 
difficulties in cor~tructlng the program for integrating Equation (2.8) on 
an electronic con~puter. 

Since after this the function i(g; ft, fa, ...) is deter~Lined once and 
for all, the solution of ~ actual problem reduces to investigation of the 
dependence of 6 *e (x) or z** (x), c~racterizlr~ the particular problem. For 
this we need to integrate the ordlr~ nor.linear first order differential 
equation 

d z * *  F (]1, f2 . . . .  ) F (U'z**, U U " z  * . 2  . . . .  ) 
aZ = u (x) = u ( z )  (2~9) 

Further it will be demonstrated t~t this is the oraly step of com~utatlon, 
requiring to be carried out for each given bou~ layer calculation; it 
can be reduced to a simple quadrature to a sufficient degree of accuracy. 



Equations and parametric approximations for boundary layers 79 

3. ~"no ono-p~tme~or molu~£on of ~he un£vorm&l equation. In the solution 

of the universal equation (2.8) there naturally occur a modest number of 

form-parameters to be fitted. 

For the "one-parameter" solution we shall, in what follows, have in mind 

the solution correspondlng to zero values of all the form-parameters except 

the first. For the "two-parameter" solution, zero values attach to all the 

form-parameters except the first two, and so on. Let us agree to denote 

these solutions by the corresponding number, placed superscript in brackets. 

Thus, setting /2 = /3 ..... 0 (3.~) 

we obtain the basic universal equation in the "one-parameter" approximation 

Ok a -~- 2Bo2 Ok 2 - ~ -  1 - -  -~  Bo 2 \ Ok / 

i ff t /O*(1) 02"(1) 0*  (I) 0,¢(*)] (3.2) 
--(1)/l \ 0 k O k 0/1 0/1 Ok 2 / 

(I) (1) : (:I)'(1) = 0 for k~---0, (1)'(1)--->t {or ~--> c¢, (~9(1)___~ O0  (~) for / 1 = 0  

Condition (3.1) in the exact formulation corresponds to the boundary layer 

with a linear distribution of velocity on the outer boundary. The function 

~I) (~; /1) and its derivatives, and con- 

10 

f 

F 
1.0 g.O 3.0 

Fig. I 

4.0 

sequently also the auxiliary functions 

~(*) (11), H(*) (11) and F (1) (11) could be 
obtained by making use of the one-parameter 

class of exact solutions due to Howarth for 

"one-slope" [8] distributions of external 

velocity, if we eliminate the parameter 

appearing in these solutions. 

A computational experfment of this type 
shows that preference must be given to 
direct numerical integration of the univer- 
sal equation (3.2). Such an integration in 
the case of one form-parameter was carried 
out at the Leningrad Computation Center of 
the Academy of Sciences, USSR, on the com- 
puter BDCM-2 (BESM-2). We shall show some 
of the results. 

In Table I are placed the values of the 
dimensionless velocity u / U ~ ..(I) (k, /i) 

for a series of values of ~ and /~. Fig.l shows graphs of this dimension- 
less velocity; curves 1,... 6 correspond to values of the form-parameter 
f~- 0.0854, 0.04, 0 --0.04, --0.07, --0,0845 . In Table 2 are given 
values of ~(i) and H!l),and also F(,1 ), as a function of /i. The first two 
of these quantities serve for computation of the coefficient of local visco- 
sity or and the displacement thickness 6", and the latter for determina- 
tion of the momentum thickness 6"* and of the distribution f~ (x) which 
plays a subsidiary role. The corresponding curves are shown in Figs. 2 and 
3. 

Using for the one-parameter method the first of the successive approxl- 
mate solutions of the universal equation (2.8) is better founded from the 
theoretical point of view than the old, purely intuitive one-parameter 
methods. As~shown by comparative calculations, in partlcular, the example 
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 o8 51_oo  1 _oo  _oo71_   I  o5t oo, f_ o31 _o o, 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
t . 0  
1.2 
t .4  
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 

0 
0.0047 
0.0132 
O. 0255 
0.04t5 
0.0612 
O. 0844 
0.1110 
O. t 408 
O. t737 
O. 2093 
O. 2876 
O. 3731 
0.4625 
O. 5522 
O. 6386 
0.7181 
0.7881 
O. 8469 
O. 8939 
3.9296 
3. 9553 
3.9729 
3. 9843 
3.99t4 
3.9955 
D. 9977 
~. 9989 
E). 9995 
O. 9998 
1.0 
1.0 
t .0  
1.0 
1.0 
1.0 

0 
0.0064 
0.0166 
O. 0305 
O. 0480 
O. 0692 
O. 0938 
0.1218 
O. 1528 
O. 1868 
O. 2234 
O. 3033 
O. 3898 
O. 4794 
O. 5687 
0.6539 
0.7317 
O. 7997 
O. 8562 
O. 90i 1 
O. 9348 
O. 9590 
0.9753 
O. 9858 
O. 9922 
O. 9960 
O. 9980 
0.999t 
0.9996 
O. 9998 
1.0 
i.O 
t .0  
t .0  
t .0  
t .0  

0 
0.0103 
0.0242 
O. 0416 
O. 0626 
0.0869 
0. i t45 
0.t452 
0.i787 
0.2149 
0.2534 
0.3362 
0.4241 
0.5237 
0.60t4 
0.6838 
0.7579 
0.8215 
0.8735 
0.9141 
0.9442 
0.9653 
0.9794 
0.9883 
0.9937 
0.9968 
0.9984 
0.9992 
0.9997 
0.9999 
t .0  
1.0 
1.0 
1.0 
t .0  
t .0  

0 
0.0175 
9.0381 
0.0618 
0.0886 
O. 1 t82 
9. t506 
O. t856 
O. 2228 
O. 2621 
O. 3032 
O. 3892 
0.4778 
O. 5658 
O. 6496 
0.7265 
O. 7939 
O. 8505 
0.8958 
O. 9303 
O. 9554 
0.9727 
O. 9840 
0.99tl  
O. 9952 
0.9976 
0.9988 
O. 9995 
0.9998 
O. 9999 
1.0 
1.0 
1.0 
t .0  
1.0 
t .  o 

0 l 
0;0435 
o.o8751 
0.t319 t 
O. t.7661 
o.22161 
0.2667[ 
0.3t17 
O. 3566 
0.4012 
O. 4452 
O. 5308 
0.61t7 
O. 686~ 
O. 752~ 
0.8t0~ 
O. 859~ 
O. 898~ 
0.9295 
O. 9525 
O. 9692 
0.9807 
O. 9883 
O. 9932 
O. 9962 
0.998(3 
0,9989 
O. 9995 
O. 9997 
0.9990 
9.9992 
t . 0  
1.0 
1.0 
1.0 
I. 0 

worked out in Section 5, the results obtained on the basis of Table 2 are a 
good recommendation for the method described in the present Section. 

In the accepted one-parameter approximation Equation (2.9) will have the 
form 

dz** F(U(h ) _ F (l) (U' z**) (3.3) 
dx .U (x) U (x) 

-ao8 -oN 

1, I 
o,,! 1 

i 1 
) I r, 

0 004 ON 

, F¢O e 1 
OI..OJ 

"%/" I 
\ \ o , \  / 

J 

Fig. 2 Fig. 3 
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Table 1 

0 0.0t 0.02 0.03 0.0~ 0.05 0.08 0.0854 

0 
O. 0470 
O. 0939 
0. t408 
0.1876 
0.2343 
0.2806 
0.3266 
0. 3720 
0.4t68 
0.4607 
0.5453 
0. 6245 
0.6968 
0.76t 1 
0.8t68 
0.8634 
0.90tt  
0.9307 
O. 9530 
O. 9691 
0.9804 
O, 9880 
0,9930 
O. 9960 
O, 9978 
O. 9989 
O. 9995 
0.9998 
0.9999 
1.0 
t . 0  
t . 0  
1.0 
1.0 
t .0  

0 
0.0504 
0.1003 
0.1498 
0.t987 
0.2470 
0.2947 
0.3416 
0.3876 
0.4325 
0.4764 
0.5601 
0.6376 
0.7078 
0.7699 
0.8233 
0.8679 
0.9040 

0 
0.0537 
0.1066 
0.1584 
0.2094 
0.2593 
0.3081 
0.3558 
0.4022 
0.4473 
0.4910 
0.5738 
0.6495 
0.7176 
0.7774 
0.8287 
0.8714 
0.906t 

0 
0.0570 
0.1i26 
0.1669 
0.2i98 
0.2712 
0.3211 
0.3696 
0.4t64 
0.46i7 
0.5052 
0.5868 
0.6609 
0.7269 
0.7845 
0.8337 
0.8746 

0 
0.0602 
0.i186 
0.1752 
0.2300 
0.2829 
0.3339 
0.3831 
0.4303 
0.4756 
0.5189 
0.5995 
0.6718 
0.7357 
0.79t2 
0.8383 
0.8775 

0 
0.0634 
0.t246 
0.1834 
0.2401 
0.2944 
0.3465 
0.3964 
0.4440 
0.4893 
0.5324 
0.6119 
0.6825 
0.7443 
0.7976 
0.8427 
0.8801 

0 . ~  0.07 

0 0 0 
0.0666 0.0698 0.0730 
0.t305 0.i364 0.t424 
0.19i6 0.1998 0.2081 
0.2501 0.2601 0.2704 
0.3059 0.3174 0.329t 
0.3591 0.3716 0.3844 
0.4096 0.4228 0.4364 
0.4575 0.4713 0.4851 
0.5029 0.5t66 0.5307 
0.5458 0.5593 0.5732 
0.6242 0.6366 0.6495 
0.693t 0.7038 0.7150 
0.7528 I 0.7614 0.7706 
0.8039 0.8104 0.8t74 
0.8470 0.85t4 0.8562 
0.8827 0.8853 I 0.8882 
0.9117 0.9128 0.914t 

0.9348 0.9348 
0.9521 t 0.9512 

0.9666 0.9654 I 0.9640 
0.9768 0.9755 0.9738 
0.9843 J 0.9830 0.9812 
0.989610.9884 0.9868 
0.9933 0.9923 0.9908 
0.9958 0.9949 0.9937 
0.9974 I 0.9968 !0.9958 

0.9078 0.9093 0.9t06 
0.9323 0.9333 
0.9537 0.9540 
0.9694 0.9692 
0.9804 0.9800 
0.9878 0.9874 
0.9927 0.9923 
0.9958 0.9955 
0.9976 0,9974 
0.9987 0.9986 
0.9993 0.9992 
0.9997 0.9996 
9.9998 0.9998 
0.9999 0.9999 
1 .0  1 .0  
t .0 1 .0  
i .0 i .0 
1 .0  1 .0  
t .0 t .0 

0.9340 0.9344 
0.9540 0.9538 
0.9688 0.9683 
0.9795 0.9788 
0.9869 0.9862 
0.9919 0.9913 
0.9951 0.9946 
0.9971 
0.9984 
0.9991 
0.9995 
0.9998 
0.9999 
0.9999 
i . 0  
1.0 
i . 0  
1.0 

0.9347 ] 0.9348 
0.9534 0.9528 
0.9675 
0.9779 
0.9854 
0.9905 
0.9940 

0.9968 0.9963 
0.998i 0.9978 I 
0.9990 0 .9987 '  
0.9994 0.9993 
0.9997 0.9996 
0.9998 0.9998 
0.9999 0.9999 
t . 0  0.9999 
1.0 t .0  
1.0 t . 0  
1.0 1.0 

0.9984 
0.9991 
0.9995 
0.999.7 
0.9998. 
0.9999 
1.0 
1.0 
t .0  

0.9980 0.9972 
0.9988 0.9982 
0.9993 0.9989 
0.9996 0.9993 
0.9998 0.9996 
0.9999 0.9998 
0.9999 0.9999 
1.0 0.9999 
1.0 1.0 

0 
0.0748 
0.t457 
0.2128 
0;2761 
0.3358 
0.3917 
0.4442 
0.4932 
0.5388 
0.5813 
0:6572 
0.7218 
0.7763 
0.82t8 
0.8595 
0.8903 
0.9152 
0.9351 
0.9509 
0.9632 
0.9727 
0.9800 
0.9856 
0.9897 
0.9927 
0.9949 
0..9965 
6.9976 
0.§984 
ff.9990 
0.9994 
0.9996 
0.9998 
0.9999 
1.0 

Table 2 

It 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.085i 

H(1) 
FCl) 
8<i) 

1 

Hcz> 
FCl) 
8el) 

0.2204 
2.5919 
0.4408 

0 

- -0 .0 t  

0.2034 
2.6441 
0.4997 
0.00i8 

0.2375 
2.5384 
0.3847 
0.0010 

--0.02 

0.1851 
2.7063 
0.5585 
O.0O34 

0.254210.2706 
2.4903 2.4449 
0.3293]0.2750 
0.002810.0056 

- -O .03 i - -o .o~  

0.1662 0.t462 
2.7754 2.8538 
0.6t89i0.6807 
0.00671o.ol13 

0.2868 
~.4014 
0 , 2 ~ 9  
0.0097 

--0.05 

0.1249 
2.9458 
0.7444 
0.0179 

0.3028 
2.3599 
0.170t 
0.0150 

--0.06 

0.1015 
3.0575 
0.8099 
0.0263 

0.3188i0.3348 
2.319612.2802 
0.t197[0.0708 
0.0217]0.030o 

--0.071--0.08 

0.074610.0397 
3.2051 I 3.44101 
o.8779Lo.950o 
0.037110.0521 

0.35i0 
2.2403 
0,0239 I 
0. O4O2 
--0.0835 

0.021i 
3.5974 
0.9770 
0.059i 

0.360i 
2.2173 

0 
0. 0472 

~-0.0852 

0 
3.8150 
0.9909 
0.0633 

If the point x = 0 corresponds to the frontal critical point of the 
body, at which U m O, then this point is singular, and ~I) will vanish 
there, l~roe Tsble 2 it follows that at this point (~- 

J1 = /lo = 0.0854, Zo** = 0.0854/ U o' (3.4) 
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which gives the Inltlal value z** In the numerical Intergration of Equation 
(3.3). If, boweve~, as occursat the le_mg_~ngedgeof a plate or a profile with zero 
nose angle, U ~ O,-then z**- zo ~*" O , and 6~ ~ - 0 . Finally, in the 
general case, if U # O for a certain value x = xo>O . then the initial 
condltlon is z**. Zo**> O when x - Xo> O , where zo**- 5o**S/~ expresses 
~/2 approximate, summary form the previous history of the development of the 
boundary layer in the segment'0<z~x0. This value zo** can be used for 
determining the constant of integration in the first order equation (3.3). 

We can set up the followlngslm~le and practically convenient computa- 
tlonal method for integrating (3.3). As is evident from Fig.3, the curve 
F(1)(/I) deviates only slightly from its tangent passing through the point 

f~= 0 , and therefore can be represented by Equation 

F (1) (11) = a - -  b L  + ~ (/1) (3.5) 

where ¢(~) expresses the deviation of the curve from its tap~ent; the mag- 
nitude of this deviation is shown in Table 2 and in Fig.3. The numerical 
values of the constants a and b , as is demonstrated in the following 
Section, can be 

a = 0.4408, b = 5.7i4 (3.6) 

Carrying out the formal integration of Equation (3.3), we can obtain one 
of the following two integral relations: 

i Ub-1 (x) {a + ~ [h (~)]} d~ 
U'  (z) 

11 (x) - Ub (x) 

o (3.7) 
x 

z** (x) - Ub (~) U b-1 (x) {a + 8 [11 (x)]} dx 
0 

in which the constant of integration is chosen from the condition for finite- 
ness of Ii and z** when U - 0 . 

As is evident Srom Table 2, the values of e are small in comparison 
with the quantity a . Calculation of f, (x) and n**(x) could be obtained 
by successive quadratures, starting by neglecting e in comparison with a 

aU' (x) ! Ub_l d x (3.8) 
/1 (x) - V~ (x) 

b u t  i t  i s  s i m v l e r  t o  p r o c e e d  d i f f e r e n t l y .  L e t  us i n t r o d u c e  t h e  n o t a t i o n  
e k =  e [ / , ( x k ) ] , . w h e r e  xk a r e  t h e  a b s c i s s a s  o f  p o i n t s  o f  a r b i t r a r y  d i v i s i o n  
of the IntervaA x • Then, replacing the actual distribution e(x) by a 
step-functlon, let us rewrite the second of Equations (3.7) in the form of 
a recurrence relation xk 

Yb(x~) z** (xk) ---- Ub(zk_l) z** (xk_l) + (a -}- ek_l) f U b-1 (x) dx (3.9) 

Xk-  1 

enabllng us, with the help of previously prepared tables of powers of num- 
bers with positive exponents b and b -- 1 , easily to find z**. Close 
to those values xk which correspond to very small /,, we can moreover 
simply use the quadrature (3.8). An example of the calculation is given in 
Section 5. 

The numerical integration of the universal equations with two or more 
form-parameters involves considerable difficulties, since it needs the use 
of powerful electronic computers. 

Comparlsons with exact solutions show that the one-parameter approxima- 
tion repres%nts the main part of the solution. Assum~ that at least out- 
side the reglonlmmediately adjacent to the point of se~atlon we can take 
the correction introduced by the two- and three-parameter approximations to 
be small in comparison with the main part of the solution, let us content 
ourselves with expressions of these corrections, calculated with the help of 
series expanded in powers of the form-parameters. The coefficients in these 
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series are expressed as functions of the reduced coordinate g , being inte- 
grals of a system of ordinary linear differential equations, more easily 
amendable to numerical integration on computers than the two- or three-para- 
meter universal partial differential equations. 

~. Oons~z~o~ion of ~ho molu~ion ot tho m ~ l ~ l - p ~ m ~ o r  u n l v o r s ~  o q ~ i o n  
£n ~ho foz~  o t  & oor io |  of power| ot ~he f o z ~ - p ~ e ~ e ~ e r | .  We shall seek the 

solution of the general universal equation (2.8) in the form of a power 

series [ 5S 

(x, ~) = ~0 (~) + ~: (~) A + ~: (~) A ~ + ~ (~) L ÷ 
+ o::: (~)/? + ¢:, (~) AL ÷ ¢~ (U/, + • • • (4.:) 

First of al~ let us expand the quantities (;, B" and F in power series 

with respect to the form-parameters 

; = ;0  + ~I/i "-~ ~ll /12 -~- ~2f2 -}- ~111/13 -~- ; 1 / 2 / 1 ] 2 - ~ -  ~3/3-~- " " " 

H : Ho + H : / :  + H n / ,  2 + H2] 2 + H i , i f 1 3  + H 1 2 / l / 2  ~ H3/3 + • • • (4.2) 

F = F o + FI ]  1 + F l l f l  2 -}- F J  2 + FI ,1 /13  -~- F 1 J I / 2  -{- F 3 1 3  -~- • • • 

and  l e t ;  us  n o t e  t h a t  t h e  c o n s t a n t  o o e f f ~ . c l e n t s  ~ . . .  and  Art ~ . . . ,  i n  a c c o r d -  
a n c e  with Formulas (1.6) and (4.1),(i.12), (bearing Inmlnd that a dot denotes 

dif~ferentiation with respect to g ) are given by 

~ . . .  = Bo@;i  (0),  H, j . . .  - -  1 . . . .  ~o¢~j... (0¢) (4.3) 

after which the constants Ft ~.. .  according to the first of Formulas (1.4) 

are determined thus: 

Fo = 2 ;0 ,  F ,  - -  2 (~ :  - -  H 0 - -  2) ,  F l 1 =  2 (;11 - -  H 1 ) ,  F2 = 2~2 (4 .4 )  

Fll  I = 2 ( ~ n :  - -  n n ) ,  F : z  = 2 (~12 - -  H2) ,  F3 = 2 ; 8 ,  • • • 
Substituting these expansions in Equation (2.8) and  equating coefficients 

in similar one-term powers of the complex form-parameters, we obtain the 

following system of ordinary linear nonhomogeneous differential equations 

[5] for the unknown functions ~l~...(g): 

L~ ((D~.. .)  = - -  (1 IBo 2) ~ . . . ~ o ~ o ' "  + r~.:... 

(~)ij. . .  ~ (~):j... = 0 for ~ = 0, (I):.:... ----, 0 for ~. --> oo (/4.5) 

( k = i + / + . . . ;  i, i . . . . .  t , 2  . . . .  ) 

Here by L~ we understand the linear operator 

L~ =- D 3 + (Do D~ - -  2 k O o ' D  + (2k + I) Oo", D : d / d ~  (4.6) 
The Function %(g) satisfies Blaslus' equation (1.8), whilst the functions 

Ft ~... (~) , appearing in the rlght-hand side of the equation with the same 

indices ~ as the operator L~, are expressed in terms of the functions 

~,~...(g) and the constants ~t~..., Ht~ .... already calculated in the inte- 

gration of equations with the index of the operator less than ~ . 

We reproduce the expressions for Ft ~... (g) , corresponding to indices 
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k from 1 to 3 

F 1 =  (t / B o  2) [ ¢ o  ~ -  t + ( H 0 + i ) ¢ o ¢ o  "] (4.7)  

r11 = 2¢i .3 - 3¢1¢i" ~- (|/Bo 2) [Hi¢o¢0" -- (~i -- H0 -- i) (i)0(~l" - -  

*-- (3~ 1 -- 3H 0 -- 5) ¢0"'¢i ÷ 2 (~i -- H0- i) ¢0"¢I"] 

I~2 = ( l / B o  2) ( (1) ;Ol*  - -  (I)o'(I)l) 

F m =  6 ¢ 1 " ¢ n "  - -  3 ¢ 1 ¢ n "  - -  5 ¢ 1 " ' ¢ n  + ( i / B o  2) [(2~1 - -  2Ho - -  3) × 

X ((i)1 "2 -~ 20o(I )n)  ~- Hn¢o¢o"-- ( ~ 1 1 -  H I )  ( ¢ o ¢ 1  - -  2 ¢ o ' ¢ 1 " ~ -  3 0 0 " ¢ * ) -  

- -  (~1- -  H o - -  l )  ¢ o ¢ I , " - -  (3~1 - -  3 H  o - - 5 )  (i)1(i)1"-- ( 5 ~ 1 - -  5 H  0 -  9 ) ¢ o " ¢ n 1  

F12 = - -  3 ¢ 1 ¢ 3 "  -~- 6¢1"¢2" - -  5(I)1"¢3 - -  ( 1 / B o  2) [(~1 - -  Ho  - -  t)  ¢0¢2"" -~ 
( 5 ~ 1  - -  5 H  o - -  8) ¢ o " O 3  - -  H 3 ¢ o ¢ o "  - -  ( 4 ~  - -  4 H  o - -  5) ¢ o ' ¢ , ' - -  

- -  ¢1.2 + ¢1(:D1 '" - -  2¢o '¢11"  -[- 2 ¢ o " ¢ n  ~ ~3 (2(i):I)o'¢1" - -  3 ¢ o " O 1  - -  O o ¢ 1 " ) ]  

r3 = (l t B J )  ( ¢ o ' ¢ . , "  - -  Oo"'(i)3) 

The peculiarity of Equations (1.5) and (2.8) noticed in Sections 1 and 

2 survives also In the system of equations (4.5), since, according to the 

first of Equations (4.3), the quantities ~j .... appearing In the right- 

hand slde of the equations of system (4.5), require for their determination 

a prior knowledge of the functions ~j... (~), being the solutions of the 

same equations. Thanks to the llnearlty of the system (4.5), this difficulty 

is easily eliminated. Setting in system (4.5) 

~iJ... (~) := XiS... (~) + ~5...Yij... (~) (4.8) 

we arrive at a combination of two linear nonhomogeneous systems 

Lk (Xij...) := F~j .... Lk  (Yis.-) = - -  ( 1 / B o  2) ¢ o ¢ o ' "  (4.9)  

wlth  the same zero boundary cond i t i ons  fo r  the f u n c t i o n s  X,~.. .(~) and 
YIj... (g) as for the functions ~ij... (~) In system (4.5). 

After the functions X,j...(g) and y~j... (~) are determined and once and 

for all tabulated, the quantities C~ ~... can be calculated according to 

Formulas BoX~j... (0) 
= ( 4 t o )  

The numerical integration of the system of equations (4.9) was effected 
~n the Lenln~rad Computation Center of the Academy of Sciences, USSR on the 
S9CM-2 (BESM-2) computer. Tables were constructed of the functions X~, X n, 
X2, Xlll, J~'12, X3 and ~'1, ~Zll : Y2, Yin = Y~z ~ Ys, and from them were d e t e r -  

mined a l s o  values  of  the cons t an t s  ~, ~n, ~,  ~l~t, ~t~, ~a; Ht, Hit , / /2,  Ht~l, H~, 
Ha; F~, F n, F~, Fnl, F~, F a- 

Since It Is not possible to publish the tables of the functions X, ~ (g) 
and Y~...(~) , we reproduce those expansions (4.2), which are the n~5"s'~ 
imPortant for practical application, usinE the numerical values of the coef- 
ficients {~... , H,:... , F~... 

The following values were obtained: 
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= 0 . 2 2 0 4  - ~  1 . 7 3 5 0 / ~  - -  2 . 4 t 8 8 / ~  ~ - -  0 . 2 9 9 2 [ ~  n u t 8 . 2 3 4 / ~  s - -  0 . 1 6 5 3 h / ~  - ~  0 . 0 9 3 7 ] s  ~ -  . . .  

H =  2 . 5 9 t 9 - - 5 . 4 2 8 2 / 1 ~ - 2 1 . 9 1 4 / t ~  - t . 4 7 4 1 / ~ - -  

- -  t 6 3 . 0 6 / t  ~ - -  4 . 8 0 7 6 / g ~  ~ 0 . 5 0 6 t 3 / a  n u . . . ( 4 . t t )  

F = 0 . 4 4 0 8 - - 5 . 7 1 3 9 / ~ c  6 . 0 i 8 9 / ~  ~ - - 0 . 5 9 8 4 / ~  - -  7 . 3 6 1 1 / ~  ~ - -  3 . 2 7 5 3 / t / ~  - -  t . 0 1 2 3 / ~ - ~ . . .  

Increasing slightly the speed of convergence, let us isolate in these 
series the already tabulated one-parameter portions which co~respond to con- 
dition ~s" ~a" ... - 0 . Then we obtain the following formulas for allow- 
ins for the effect of the second and third form-parameters: 

~ ~(1) (11) - -  0 . 2 9 9 2 / 2  - -  0 . 1 6 5 3 / 1 / 3  ~-  0 . 0 9 3 7 / s  -~  • • • 

H ~ H (1) (/1) -~  t . 4 7 4 1 / 2  - -  4 . 8 0 7 6 ] 1 / ~  - -  0 . 5 0 6 1 3 / ~  -~  . . .  ( 4 . 1 2 )  

F = F (~) (/1) - -  0 . 5 9 8 4 / 2  - -  3 . 2 7 5 3 / 1 / 2  - -  1 . 0 t 2 3 / ~  ~ ,  . . .  

which, after the two-parameter universal equation has been integrated, can 
be substituted for greater accuracy. 

As is shown by the first comparative calculations, for determining the 
quantity ~**(x) , and consequently, the momentum thickness 5**(x) , it is 
sufficient to use the simple method, described at the end of Section 3, only 
i~ certain cases, possibly allowin~ for the effect of subsequent form-para- 
meters in the correction ¢ . 

07 

0~ 

CI3 
0 

~"I ] 

i 
08 

/ 
I6 r 0 04 0tl 12 :/; r 

Fig. 4 Fig. 5 

5. An exas~le of ~he oaleula~ion an~ oo~Imon wi~h ~he exae~ iolutloa. 
To illustrate the arguments propounded in the preceding Sections, let us 
consider the case of a slnusoldal velocity distribution at the outer boundary 
calculated by Terrill [iO], which corresponds to the streamline flow past a 
circular cylinder of an Irrotational stream of ideal incompressible fluid. 

Let us agree in the present Section to deal with the dimensionless quan- 
titles, obtained by dividing the dimensional longitudinal lengths and velo- 
cities by the radlus of the cylinder and the velocity at infinity, respec- 
tively, and the transverse ones by the same quantities, but decreased by the 
factor /~ , where the Reynolds number ~ is constructed from the radius of 
the cylinder and the flow velocity. 

In these dimensionless quantities we shall have 

= s i n  z ,  z** ~ 6 * .2 ,  ( 
;u 

U 
o y / ~ = o - -  5 " *  (5 .1 )  

I n  F i g . ~  w e  p r e s e n t  f o r  c o m p a r i s o n  t w o  c u r v e s  o f  t h e  d i m e n s i o n l e s s  q u a n -  
t i t y  5 " ~ ( x ) :  o n e  c a l c u l a t e d  b y  t h e  m e t h o d  d e s c r i b e d  a t  t h e  e n d  o f  S e c t i o n  
3 - -  w i t h o u t  c o r r e c t i o n  f o r  t h e  e f f e c t  o f  t h e  s e c o n d  a n d  t h i r d  f c r m - p a r a m e t e r s ,  
whilst the other corresponds to the exact solution. In general nature o f  
the growth of the quantity 6**, especially close to the separation, there 
Is scarcely any increase in the relative accuracy of the calculation.(in Fig. 
g the maximal discrepancy at the point of separation does not exceed 3 per 
cent). 



80 L.G. Loltslanskii 

In Fig.5 are given curves of the variation along the boundary layer of 
the values of the three form-parameters 

/1(x) = z** c o s  x ,  /~ (x) . . . . . .  z * . 2  s i n  ~x, 13(x) = - - z  *.3 s i n  ' x  c o s  (5 .2)  

We can observe the completely insignificant value of the form-parameter 
fs everywhere except in the neighborhood of the point of separation, and the 

- I  

-y/ 
/ 
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tZ4 

/25 

i a 

i 1 
Q8 12 lb' ,z 

Fig. 6 

rather small value of f2 in the 
accelerating part of the layer. 
Probably this explains the success 
of the application of the one- 
parameter method to the majority 
of practical calculation . 

Fig.6 shows the distribution of 
the dimensionless quantity 

(au I Oy)~=o, 
characterizing the local coeffici- 
ent of friction at the surface of 
the cylinder. As is obvious from 
the above, the one-parameter appro- 
xlmatlon (i) is sufficient to obtaln 
a satisfactory result. Inclusion 
of only the second term (succeeding 
terms are very small) even in the 
first of Equations (4.12) produces 
almost complete agreement (In Fig. 
6 indicated by the circles) with 
the exact solution (2) everywhere 

except at the region of separation, where, evidently, the corrections based 
on the use of the power series are no longer applicable. The method explalned 
in the procedlng Sections is applicable not only to the isothermal boundary 
layer In an incompressible fluid, but also allows immediate generalization 
to the case of the boundary layer in a gaseDus stream with large sub- and 
supersonic velocities, when it has become impossible to neglect the effect 
of compressibility of the gas, processes involving the liberation and propa- 
gation of heat, and also the occurance of dissociation of the molecules of 
the gas. 

6.  ~ e  ~ v e r s s ~  e q ~ t ~ o n s  o# ~he b o ~ r y  lmFer ~ a stream o~ homcse- 
~ O U 8  I J ~ |  WASh ~@A'|@ V @ 1 0 0 ~ $ ~ 8 I .  Let us agree in what follows to denote by 

the indices: a, the thermodynamic quantities for adiabatically and isen- 

tropically retarded gas inside the boundary layer; I, the same, but outside 

and on the outer surface of the boundary layer; e and w , the dynamic and 

thermodynamic quantities on the outer surface of the layer and on the wetted 

surface of the body. Let us for simplicity take a linear law connecting the 

dynamic coefficient of viscosity of the gas ~ with the enthalpy ~ = c~T 

~ / ~ 1  -~- Ch/h~, C = ( r w / r l )  '~ ( r  1 + r , ) / ( r ,  q- rs) (6.1) 

Here T, is the constant in 8utherland's formula. 

Let us pass, In the boundary layer equations, from the usual physical 

coordinates and velocities x, y, u, u to new variables X, Y, U, V, by means 

of the Dorodnltsyn-Stewartson transformation (p is the density of the gas, 

M. is the Mach number at the outer surface) 

x 3~--1 k~-I y 

x = I r" = f k = (6 .2)  
Pe cv 

0 0 
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--t/z o he Ue~* 
U = X~-'/'u, V = ~ e  v ,, X~= ~ = 1 - - × ,  × =  2h-"-~ 

3k--1 k + l  

We shall -introduce, moreover, the stream function ¥(X, Y) 

U = O ~ / O Y ,  V = :  - - O W ' / O X  

and the heat function 

S = ( h ~ / h ~ ) - - I  

Then we obtain [II] the well-known system of equations (v 

tic coefficient of viscosity of the gas, a 

(6.2) 
(cont.) 

(6.3)  

(6.4) 

is the kinema- 

is the Frandtl number) 

dU e OsuZ ow o2,~ owo2~F _ Us (1 + S) 4- vl 
0-7 0 X  OY OX OY ~ ~ ' OY a 

o,t, o , F ~ U ~ ,  S ~ O  for Y - - , o c  (6.5) = b--f----O, S ~ S~  for Y = 0 ,  o--9 

o t g _ U o ( Y ) ,  S = S o ( Y )  for X = X o  
OY 

We shall introduce for consideration the following two conventional thick- 

nesses of the boundary layer in the variables of (6.2): the displacement 

thickness A* and the momentum thickness A** 

A* = I - -  + S  dY, A * * = \  I - -  d Y  (6.6) 
o o 

T h e n  t h e  e q u a t i o n  o f  m o m e n t u m ,  e a s i l y  d e r i v e d  f r o m  ( 6 . 5 ) ,  p r e s e r v e s  t h e  

same form as in incompressible fluid (a prime denotes differentiation with 

respect to X) 
dZ** F d /  Ue Ue" 
dx -- g-~' e x -  u~ F +  ~ /  (G.7) 

Here 

Z * * -  A**~ 
,v 1 

ue'A**~ A* r o (g / ue) 1 
- - - - '  / - -  ~1 ' H = ~ ,  ~ = L o - ( V ) h ~ j Y = o  

((~.~) 

F = 2  [ ~ - - ( 2 + H )  II 
If now, completely repeating the processes described in the foregoing 

Sections, we pass from the variables X, y, ~ to the new "reduced" variables 

X = X ,  ~ = B o Y / A * * ,  (b = BoT  / (U~A**) (6.!t) 

introduce an infinite combination of form-parameters 

]o = × ,  / k =  U e ~ - l ( d ~ U e / d X  k) Z**k; / 1 - - /  ( k = t , 2  . . . .  ) (6.10) 

and take them together with the reduced ordinate g as the new combination 

of independent variables, then the system of equations (6.5) takes the fol- 

lowing form, derived by S.M. Kapustlanskli, post-graduate of the Leningrad 
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Polytechnic Institute: (~. t i! ) 

c o  

2Bo' "-fro -2 \ O~ / Bo' t ) Ok [ , '~  O~ 0/~, Ot# O~ 2 
O,D 

__ Off) 

o~. o4 

• = (D o (~) ,  S-----S o (~) t ~  / o = X o = u ' o ~ / 2 h , ,  / 1 - - - / 2  . . . . .  0 

In this system the quantities 0 k are defined Just as in Equation (2.6), 

but are expressed in terms of the new values of F and j~, given by Equa- 

tions (6.8) and (6.10), whilst e o- 2~(u - l)~. Regarding the normalizing 

factor Bo, this, as previously, is chosen from the conditions that when 

/:" J'a" ... " 0, Equation (6.11) transforms into the self-slmilar solution 

of Blaslus' problem co(g) for the plate in $he presence of heat transfer 

and dissipation (the dot is the sign of differentiation with respect to ~) 

(I)o"" -F CDo~o" = 0 (6. t2)  

So" -~ o CDoSo" + 2 (o - -  t) ×o (CDo "'2 -? Oo'q~o "'') = O, ×o= uoo ~/(2hO 

¢ ~ o =  ~ o  " =  O, S o = S , ~ ,  ~o, ~ = 0 ,  ¢ J o " - ' l ,  S o ~ 0  t~, ~,-, 

Thanks to the assumed llnearf~ty of the relation between viscosity and 

temperature, #o(g) does not differ at all from the corresponding function 

in incompressible liquid, and consequently Be also is the same. It should 

not be forgotten, however, that Ho, according to the accepted definition 

(6.6), becomes now different. We shall have 

Bo = f _ o.o  = ¢o" - -  ¢o ' )  
0 0 

• t ~' (6. t3) 
Ho = h -v¢ ---- ~ I (1 - -  ¢o" ~ So) d~, ~o = BOO[" (0) 

Equations (6.11) contain a number of parameters characterizing the condi- 

tions of actual individual problems. First of all, this is the assumed con- 

stant value of Prandtl's number s . Such also is the dimensionless quantity 

S.- (h./~,) -- 1 , expressed in terms of the actual value of the "temperature 

factor" T./T. and the Mach number M® of the free stream, which are char- 

acteristic of each individual problem, according to Formula 

Sw = t r , ,  / Too) [i + '/~ (k - -  1) MoJ] -a - -  I (6 . i4)  

The local "compressibility factor" of ~he gas ~ , depending on the 

"local" Mach numbers ~.- u./s. or W.*- u./m*, (where a* is the critical 

velocity of the gas outside the boundary layer) and in the case of homoge- 

neous gas on the physical constant of gas k - o,/e,, according to Fol-mulas 
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k - - I  k--,, i k - - i  
M~ .2 

appears in a number of arguments of (6.10) and does not violate the univer- 

sality of the system (6.11). Moreover we retain the possibility of carrying 

out in advance once and for all the integration of the system (6.11) for 

different values of the parameters a, S w and also % (0~M~I). The latter 

is permissible if in Equations (6.11) in the first approximation the differ- 

entiation with respect to ~ is dropped. The term "universal" for the sys- 

tem of equations (6.11) can be retained in a certain more restricted sense 

than before. 

Retaining the terms "one-", "two-parametrlc", and so on, depending on the 

number of form-parameters f~, we obtain with G = 1 a "one-parametric" sys- 

tem 

030(:) 

02S(:) 

[ - y ] F(:) + 2/: (:i)(:) 02~(:) ]: I -~- S (:) 
- -  "Jr- 2Bo2 0~ 2 + ~ ~, O~ J = 

'l p(1)/1 (0(]:)(1) 02(~ (1) 0(]:) (1) 02(~) (1)) 

- - +  F(I)+ 2/: (:])(Z)2Bo2 0S(1)0F~ = B~J F(1)/1 ( 0(I)(1)0~ 0S(1)oq]1 °3(D(1)0)¢1 °3S(1) ) 0 ~  

(6.15) 

(~)(I) : (I)-(1) : 0, S "(1) : S w for ~ : 0 ,  (I)*(1) ~ J, 8 (1) ~ 0 (or" ~ --~ o c  

(I)(t~=oo(g), S (~)=so(~) ,o, / :=o  
The tables already compiled for the one-parametric approximation of the 

universal equation (6.11) by means of the numerical integration of Equations 
(6.15), should agree with the earlier published one-parametric method of 
Cohen and Reshetko [l~. The latter method is based on the intuitive assump- 
tion of the suitability of using for approximating functions a class of exact 
solutions, corresponding to the power of the stipulated external velocity 
[ll], and derives the relation of this to the decrease of friction and the 
onset of separation. Moreover, the fundamental calculational conveniences 
of the method occur only in a narrow r~uge of values of the parameter S w . 

7. ~ e  l=ou:~l&1~' llklm~ 1~ Ir~,| ID ~ l | |oQt&~l~ o ~ 1 t b ~ t ~ .  In  the case of 
the boundary layer in gas in dissociated equilibrium the universal equations 
become yet more complex on account of the emergence of a number of new fac- 
tors. First of all, in this case the connection between the dynamic coeffi- 
cient of viscosity and absolute temperature can no longer be taken as linear, 
and we have to adopt the general nonlinear relation of Sutherland ( up to 
4000 =K) and thereafter use special formulas. Moreover, the quantities 
and a are no longer constant, and the density ratio p/p~= p° cannot now ~ 
be expressed, as it was in the nondissociated gas, by means of the inverse 
ratio of the corresponding temperatures, but requires special values from 
tables of the termodynamic functions for air or other gas as a function of 
the dimensionless enthalpy h = h°/h~ and the pressure p . The same 
applies also to the quantity N = WPY(~,P,), which in the case of a homoge- 
neous, nondissociated gas and for a linear viscosity law would be equal to 
unity, whilst in the present case it is a function of the dimensionless 
enthalpy and pressure. 

If we ignore the influence of pressure, which in a wide range of ratios 
of air pressure p to the atmospherec pressure Pa (J0-4~P /Pa~ |0) 
is small, then we can assume that N = N(ho/h°~) and for a given R® that 

o ~  o o p p (~) . Moreover, for alr in dissociative equilibrium up to tempera- 
tures of order 9000°K we can take the Prandtl number a as constant, 
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whilst the Lewis number is also constant and equal to unity. With these slm- 
plifyi~ but fully plausible assumptions, and uslr~ dimensionless variables 

x 

X '= ~wPvaolx, Y = d y  ( 7. ] ) 

o o 

where the asterisk superscript denotes quantities referred to an arbitrary 
given state of gas, with the existence of a stream function ¢ defined by 
the system of equations 

The boundary layer equations can be represented in the form 

OY OX OY ax ai m -  p ue ~ 4- a Y  . aY~/ (7.3) 

OF ax ax aY ~- ~ - T v * N  v* \ dY~'/ -- a Y  \ e a Y /  

- -  a u l  - -  O, h :=- h w fa t  Y .=  O; OW ---, ue  ( X ) ,  h -~. h e ( X )  to t  Y ---, o o  ay a--P 
O~F 
a---Y= uo (}9, h = ho (Y) to, X :  X o 

The density ratio p../p appearing in the right-hand sides of both equa, 
tlons of the system (7.3), is expressed in the terms of the given functions 
pC and x , t h u s :  

Pe / P = (Pc / Pl) (Pl / P) : P° (he °) / pC (h o) (7.4) 
In accordance with the notation (6.2) the numerator of this fraction is 

expressed in terms of x 
pC (h o) = pC (Xe) = pC (i -- x) (7.5) 

The conversion from the system.of equations (7.3) to the urulversal system 
was carried out by N.V. Krlvtsov (post-@~aduate of the ~ d  Pol~echnlc 
Institute) Just as in Section 6, or in the preceding Sections for the case 
of the isothermal boundary layer in incomPressible fluid. 

He introduces the same set of form-parameters with respect to the external 
form 

10=x, lk = %~-Z(~ueldXk)Z**k, Z** = A**'I~. (k=l,2 .... ) (7.6) 

and shows that if we tame for the definitions of the displacement thickness 
A e and the momentum thickness A** Expressions 

co co 

\ P ue/ 
o o 

then the momentum equ~tlon w111 have the same form as in the case of the 
incompressible fluid (primes denote differentiation with respect to X ) 

~** F dl, %' F + u," h 
dX % ' dX % %' (7.8) 

r A. ~ = 2 [ { ; - ( 2 + n )  I,}, ~=:La(Yla*S}Jr=o', H -  A,, 
Of the s~me form also Is the recurrence differential equation for the 

differentia/ of the form-parameter f~ with respect to X , and consequently 
also the form of the functions 9k (f,, f,, ...). 

Transforming in the system (7.3) to the new variables (So is a normalizing 
factor) 

X = X, ~ = BoY / A**, ~ = BsT / (usA*s) (7.9) 
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and introducing, Just as before, the form-parameters (7.6) into the number 
of independent variables, we obtain the universal system of equations (in a 
more restricted sense than in the case of the incompressible fluid, as was 
pointed out in Section 6) (8 o- 2~f, ) 

2Bo 2 a~" --Bo~L P°(h°) 
OO 

o [N~ o) oh° l F + 21i (I) ~ - - 2  ×p° (i- ×) /~. O(I) 
O~ - -  O~ J -~ 2Bo~ ~ Bo 2 p° (h) ° O~ + 

CO 

, ' (o* o h o _ 0 .  
+ 2×N(h °) \O~ 2 ] __ Bo 2 = - ~  ,91k cOik a~] 

O - -  O(D __ O, h ° =  hw° lor ~ = 0, --OO --~1, h °--,-1 - - ×  for ~---,.oo 

0=@o(~), h °=h0 °(~) to~ 1o=×, h=l~ ..... 0 

Th~ ,-ormalizlng constant B^ is chosen so that the functions ~o°(g) and 
he°(g), representing the solution of the self-similar problem, corresponding 
to constant external velocity (u.- u®) , satisfy the system of equations of 
the form 

(7.11) 
IN  ~ dh°° /d2~°~2-- d  *ol ~o d2oo =o, d [N_ (ho °) dho °] + + 2×oN(ho °) 0 

d# (ho°) -d?~j d~  d~ L a d~ 3 ° ~ -  \ -d~- /  --  

~ o ~  ~ o ' ~ 0 ,  ho ° =  hw ° fo~ ~ - ~ 0 ,  Oo'--~l ,  ho ° - ~ 1 - ×  for ~- - )oo  

representing the generalization of Blasius' problem to the case of a gas in 
dissociative equilibrium. Here x0~ Uco~/2h t is a function of only the given 
Mach number M® . The normalizing constant R o , as in the preceding cases, 
is determined from Equation 2Be s= F o but since, by virtue of the lack of 
"autonomy" of the first equation of system (7.11), ~o will now depend on 
h, , ~ and no, it is evident that Ro needs to be calculated for different 
values of these parameters. 

In the universal system of Equations (7.10) the quantities h, °, e and 
play the roles ofoparameters characterizing the actual individual problems. 
The parameter hw is analogous to the parameter S. of the foregoing Section. 

In the more general case of the boundary layer in a gas in nonequilibrium 
dissociation, there appears in tile universal system of equations the diffu- 
sion equation also, including as a new unknown the concentration of atoms. 
Granted a series of plausible simplifying assumptions, even in this case, 
the universal system can, for a selected combination of values of the physi- 
cal parameters, be integrated onge and for all, while the "reduced" stream 
function, enthalpy and concentration can be tabulated. The difficulties 
arising here are of a purely technical, computational character and can be 
overcome by applying the method of sUccessive approximations. 

i. 
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